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Abstract—We consider shielding critical links to guarantee
network connectivity under geographical and general failure
models. We develop a mixed integer linear program (MILP) to
obtain the minimum cost shielding to guarantee the connectivity
of a single SD pair under a general failure model, and exploit
geometric properties to decompose the shielding problem under
a geographical failure model. We extend our MILP formulation
to guarantee the connectivity of the entire network, and use
Benders decomposition to significantly reduce the running time
by exploiting its partial separable structure. We also apply
simulated annealing to solve larger network problems to obtain
near-optimal solutions in much shorter time. Finally, we extend
the algorithms to guarantee partial network connectivity, and
observe significant reduction in shielding cost, especially when
the failure region is small. For example, when the failure region
radius is 60 miles, we observe as much as 75% reduction in
shielding cost by relaxing the connectivity requirement to 95%
on a major US infrastructure network.

I. INTRODUCTION

Communication networks are subject to natural disasters
and attacks, such as hurricanes, earthquakes, electromagnetic
pulse attacks [1]. Network failures may result in tremendous
financial loss and hinder effective recovery to the affected
regions. Therefore, it is important for network designers to
guarantee that the network can withstand failures that may
result from disasters or attacks.

Several metrics measure the performance of the network.
The most fundamental requirement is connectivity, without
which it is impossible to support any application that re-
quires communication through the network. Another metric,
important for quality of service guarantee, is the maximum
amount of traffic carried by the network. In case of network
failures, one cannot expect the network to support the same
amount of traffic as before the failure. However, low priority
applications such as movies can be throttled to give higher
priority to critical applications in case of network failures. In
this paper, we focus on guaranteeing network connectivity,
and assume that networks are able to use limited resources to
support critical applications using service differentiation.

Previous research considers geographical failures [2], [3]
and general failures [4], [5] to assess the robustness of the
network. Geographical failure models capture the effects of
natural disasters and physical attacks; e.g., all links in the
failure region are destroyed. Under the general failure model,
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an arbitrary set of links may fail, i.e., each failure may
affect a specified set of links, whose number and location is
determined by the nature of the failure.

A common approach to design robust networks is through
redundancy and backup routes (see [6], [7] for a survey of
protection techniques for optical networks). An alternative
approach, which we consider in this paper, is through shielding
of critical links. Shielded network infrastructure can survive
disasters and attacks. Previous research suggests strengthening
cables to resist physical attacks [7], and upgrading or covering
vulnerable components to resist electromagnetic pulse attacks
[8]. More robust optical fibers and cables are being developed
to improve network reliability [9], [10]. Recently, Google
announced to reinforce undersea cables to resist attacks and
avoid frequent repairs [11].

Due to the cost of shielding, it may not be economical to
shield the entire network. Instead, critical parts of the network
can be identified and shielded to guarantee network robustness.
Previous work identifies critical parts to shield in order to
achieve certain performance objectives in various applications
[12]–[17]. The authors in [12] design optimal topologies,
given different levels of shielding cost, link construction cost,
and utility of network connectivity, under the assumption of
uniform costs for all links. In [13], the authors formulate a
road network retrofit problem, and use a two stage stochastic
programming approach to decide which roads to retrofit to
minimize the average performance loss incurred by a disaster.
Fortifying facilities to minimize the transportation cost and
path length is also considered in [14], [16], [17]. However,
no previous research is devoted to identifying the minimum
cost shielding to guarantee network connectivity. The shielding
problem we consider shares similarities with fixed charge
problems [18], [19], where the fixed costs of using network
resources make the selection of resources difficult.

In this paper, we aim to design robust networks by shielding
critical parts of the network. We determine the minimum cost
shielding to guarantee that the network remains connected
after a failure, under both geographical and general failure
models. First, we consider a single source-destination (SD)
pair in the network and determine the minimum cost shielding
to guarantee its connectivity. We develop a mixed integer linear
program (MILP) to formulate the shielding problem in the case
of general failures, and identify properties of optimal shielding
in the case of geographical failures to decompose the shielding
problem to multiple subproblems, each of which determines
the optimal shielding for a disjoint set of links. Then, we



extend the MILP formulation to consider guaranteeing the
connectivity of the entire network. By identifying the partial
separable structures of the MILP, we apply the Benders
decomposition technique [20] to reduce the running time and
solve network shielding problems of realistic size. A heuristic
based on simulated annealing further reduces the running
time significantly while achieving good results. Moreover, we
observe that shielding cost can be significantly reduced if the
connectivity requirements are slightly relaxed.

II. FAILURE MODELS AND NETWORK SHIELDING

Geographical failure models can be used to model real
world disasters and attacks [2], [3], [21]. In this paper, we
consider the disk failure model, which captures the effect
of electromagnetic pulse attacks. A disk failure with a given
radius may occur anywhere in the network, and all the links
intersecting the disk region are affected. Multiple failures can
be represented by one failure which dominates them, where
a failure dominates another if it affects all the links affected
by the other failure. The number of dominating failures is
polynomial in the number of links and can be efficiently
obtained by computational geometry techniques [2], [3].

In addition, we consider a general failure model that rep-
resents the failures of shared risk groups [4], [22]. Instead of
being limited to be within a geographical region, the set of
failed links can be arbitrary, possibly restricted by the nature
of the attack or disaster. Under the general failure model,
the possible failures and links affected by each failure are
described explicitly.

We aim to shield links by using the minimum cost to
guarantee network connectivity after any single failure event.
For simplicity we assume that shielded links do not fail. We
first consider guaranteeing the connectivity of a single SD pair,
and later extend to the connectivity of the entire network.
Finally we relax the connectivity requirement for the entire
network to allow for partial connectivity, which requires much
less shielding. Throughout this paper all nodes are assumed
to be reliable. Straightforward extensions of the proposed
approaches can be applied to node shielding as well.

III. GUARANTEEING CONNECTIVITY OF A SINGLE SD PAIR

We start by considering the shielding problem in order to
guarantee the connectivity of a single SD pair. It suffices to
shield links to guarantee that a path will exist after any failure
event. Clearly, if only one link can fail at a time, the links in the
minimum-cut-equals-1-set need to be shielded. The minimum-
cut-equals-1-set is the set of links among which any single link
failure disconnects the SD pair. Any other single link failure
will not disconnect the SD pair and need not be shielded.
However, if a failure event affects several links and disconnects
the SD pair, not all the affected links need to be shielded in
order to guarantee a path between the SD pair after the failure
event. We aim to determine the links that need to be shielded
with minimum cost to guarantee the connectivity of the SD
pair after any failure under both the general and geographical
failure models.

A. Shielding under the general failure model
Under the general failure model a failure is specified by the

set of failed links. The network is represented by a graph G =
(V,E). Each failure z affects a set of links E(z). The objective
is to shield a set of links E∗ with minimum shielding cost,
to guarantee that s and d are connected through G = (V,E ′(z))
for all z, where E ′(z) = (E \E(z))∪E∗.

The optimal shielding problem under the general failure
model can be modeled by a MILP. Let t(z)i j indicate whether
or not failure z affects link (i, j). Failure z affects a set of
links E(z) = {(i, j)|t(z)i j = 1}. Each link (i, j) has shielding cost

ci j. Both t(z)i j and ci j are problem parameters. The decision

variables are x(z)i j and hi j, which represent the amount of flow
carried on link (i, j) after failure z and whether or not to
shield link (i, j), respectively. The set of shielded links is
E∗ = {(i, j)|hi j = 1}. Since the links are undirected, (i, j) is
the same link as ( j, i), in which case ci j = c ji and hi j = h ji.
The minimum shielding cost to resist any possible failure is
given by the following MILP.

min ∑
(i, j)∈E

ci jhi j/2 (1)

s.t. ∑
{ j|(i, j)∈E}

x(z)i j − ∑
{ j|( j,i)∈E}

x(z)ji =

 1, if i = s
−1, if i = d
0, otherwise

∀z (2)

x(z)i j −hi j ≤ 1− t(z)i j ∀(i, j) ∈ E,z (3)

hi j −h ji = 0 ∀(i, j) ∈ E

x(z)i j ≥ 0 ∀(i, j) ∈ E,z

hi j = {0,1} ∀(i, j) ∈ E

Since we consider a connectivity problem, only unit flow need
to be carried from s to d, which is guaranteed by the flow
constraints (2). Constraints (3) guarantee that in case failure
z occurs and affects link (i, j) (t(z)i j = 1), unit flow can be
carried on link (i, j) only if it is shielded (hi j = 1). If link
(i, j) is not affected by failure z (t(z)i j = 0), it can carry unit
flow regardless of shielding in case of failure z. The factor of
1/2 in the objective accounts for the fact that each shielded
link is counted twice (hi j = h ji = 1).

The above algorithm can be applied to obtain the optimal
shielding under the general failure model. For example, in Fig.
1, which represents the topology of the XO communication
backbone network and consists of 60 nodes and 71 links [23],
we consider the failure model where all the links incident
to any two nodes are affected by a failure, and the number
of failures is

(60
2

)
(i.e., this model allows for link failures

incident to up to 2 nodes). The cost of shielding each link
is represented by the length of the link (in latitude/longitude
degree unit). Given the SD pair Seattle-Miami, the optimal
shielding obtained by the algorithm is represented by the thick
links with total cost 45.98.

B. Shielding under the geographical failure model
We model geographical failures as disks with a given radius

(i.e., all links intersected by the disk region fail). Given a
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Fig. 1. Optimal shielding under the failure model where all the links incident
to any two nodes are affected by a failure.

network topology and an SD pair, it is necessary to identify the
set of geographical failure regions, each of which disconnects
the given SD pair. We call such regions bottleneck regions.
Finding the bottleneck regions can be accomplished by check-
ing whether the disk failure disconnects the SD pair [24]. Since
the number of dominating failure regions is polynomial in the
number of links [2], [3], this task can be done in polynomial
time. In the following we exploit properties of bottlenecks to
decompose the shielding problem to several subproblems, each
of which consists one or more bottlenecks and can be solved
independently.

In order to guarantee a path between the given SD pair, for
each bottleneck a shielded path that starts and ends outside
the failure region must exist. Otherwise, there would be no
path going through this bottleneck after the failure occurs and
the SD pair is disconnected. If the shielded path is part of a
path between the SD pair, such a shielded path is sufficient
to guarantee that the SD pair is connected after a disk failure
occurs at this bottleneck.

We start by describing a simple algorithm that can be used
to find a shielded path to guarantee the connectivity of an SD
pair after a failure occurs at a bottleneck. We illustrate the
algorithm by using the example in Fig. 2.
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Fig. 2. A single bottleneck.

Based on previous analysis, we have the following claim.

Algorithm 1 Bottleneck Shielding Algorithm
1) Among the links intersected by the bottleneck region, find

the links that are connected to the source node without
going through any link in the bottleneck (links a, b in
Fig. 2). A link is connected to the source if a path exists
between the source and one end node of the link. These
links have to cross the boundary of the failure region.
Among the two end nodes of each link, there is one node
outside the failure region. Merge these nodes to form a
dummy source, as shown in Fig. 2.

2) Find the links that are connected to the destination
without going through any link in the bottleneck (links
c, d in Fig. 2), and merge their ends outside the failure
region to form a dummy destination.

3) Among all the links intersected by the bottleneck, shield a
path between the dummy SD pair. This path will survive
the failure affecting this bottleneck.

Claim 1. A shielded path between the dummy SD pair is
necessary and sufficient to guarantee the original SD pair
connectivity after a disk failure occurs at this bottleneck.

If there is only one bottleneck between an SD pair, we only
need to shield a “shortest path” between the dummy SD pair,
where the “length” of each link represents its shielding cost.
However, generally there may be multiple bottlenecks. Recall
that each bottleneck includes a set of links which can fail
simultaneously and whose failure disconnects the SD pair. In
order to guarantee the connectivity of the SD pair in case of
any disk failure, it is necessary to shield a path through every
bottleneck. If the bottlenecks are disjoint and do not share
common links (Fig. 3), shielding the shortest path between
each dummy SD pair is optimal.
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Fig. 3. Non-overlapping bottlenecks.

However, different bottlenecks may overlap and share com-
mon links (Fig. 4). Shielding the links in one bottleneck
may affect the shielding for another bottleneck. For example,
between the first dummy SD pair (s′,d′), shielding link c also
leads to a shielded link c between the second dummy SD pair
(s′′,d′′). Thus it is necessary to consider all the overlapping
bottlenecks jointly.

Nevertheless, if a set of overlapping bottlenecks do not share
common links with another set of overlapping bottlenecks,
these two sets can be considered separately, because shielding
decisions for one set do not affect the shielding decisions
for the other in order to shield a path in each bottleneck.
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Fig. 4. Overlapping bottlenecks.

The optimal shielding for a set of overlapping bottlenecks is
given by MILP (1) which includes constraints only associated
with the failures in this set. In short, under the geographical
failure model, instead of considering all the failures at once,
the problem can be decomposed to multiple smaller MILPs
(one per overlapping bottlenecks set) that can be solved more
efficiently.

We illustrate the algorithm using the network in Fig. 5,
which is the same as in Fig. 1, where now a failure is any
disk with radius 2◦ (about 120 miles). Given the SD pair
Seattle-Miami, there are 4 bottleneck regions represented by
dashed circles, and all the links intersected by the dashed
circles are candidate links among which shielding decisions
are made. In each of the two disjoint bottlenecks, a shortest
path is shielded, represented by the thick links with costs 5.12
and 5.88, respectively, while the overlapping bottleneck has
shielding cost 10.00, yielding to a total shielding cost 21.00.
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Fig. 5. Bottlenecks and shielded links given disk failure radius 2◦.

IV. GUARANTEEING CONNECTIVITY OF THE ENTIRE
NETWORK

In backbone networks, where nodes represent routers, it is
important to guarantee that all the nodes are connected. Since
links are shared by many SD pairs, shielding links to guarantee
the connectivity of one SD pair may benefit another SD pair.
The union of the optimal shielding for each SD pair may not be
the optimal shielding for the network. In fact, all the SD pairs

must be considered jointly in order to determine the optimal
shielding.

A. Shielding under the geographical failure model - the cases
of huge and tiny failures

We start by considering two special cases of geographical
failures. In the first case, the failure region is huge and contains
all the links in the network. Unshielded links are destroyed by
a failure event. In this case, in order to keep all the nodes
connected, one must shield at least a minimum spanning tree,
where the weight of each link is its shielding cost.

In the second case, the failure region is tiny, which affects
either a single link, or the links incident to one node. If
the network has tree structure, every link’s failure would
disconnect the network. Therefore all the links in the tree
structure have to be shielded. On the other hand, if nodes
form a cycle, removing the links incident to one node does
not affect the connectivity of the other nodes (recall that we
only consider one failure at a time). Therefore, it suffices to
guarantee that each node is incident to at least one shielded
link, which connects this node with the remaining nodes after
any failure. For a cycle, the optimal set of links to shield
is its minimum edge cover. Minimum edge cover of a graph
is a set of edges of minimum weight such that every node
in the graph is incident to at least one edge in the set. The
calculation of minimum edge cover takes polynomial time and
can be obtained by calculating the maximum matching in a
transformed graph [25]. The detailed algorithm can be found
in Chapter 2 of [26].

B. Shielding under the general failure model

Finally we consider optimal shielding to guarantee that the
entire network is connected under the general failure model.
The network is represented by a graph G= (V,E). Each failure
z affects a set of links E(z). Our objective is to shield a set of
links E∗ using minimum shielding cost, to guarantee that G =
(V,E ′(z)) is connected for all z, where E ′(z) = (E \E(z))∪E∗.

The MILP formulation for this problem is similar to the
formulation for the single SD pair connectivity problem,
except that the constraints guarantee the connectivity of the
entire network instead of a single SD pair. The variables and
parameters have the same meaning as in MILP (1).

min ∑
(i, j)∈E

ci jhi j/2 (4)

s.t. ∑
{ j|(i, j)∈E}

x(z)sd
i j − ∑

{ j|( j,i)∈E}
x(z)sd

ji =

 1, if i = s
−1, if i = d
0, otherwise

∀z,s,d

x(z)sd
i j −hi j ≤ 1− t(z)i j ∀(i, j) ∈ E,z,s,d (5)

hi j −h ji = 0 ∀(i, j) ∈ E

x(z)sd
i j ≥ 0 ∀(i, j) ∈ E,z,s,d

hi j = {0,1} ∀(i, j) ∈ E

In MILP (4), for each SD pair and failure scenario, there
is a flow variable for each link. The number of variables is



very large since there are many possible failure scenarios. It is
difficult to directly solve MILP (4) for large problem instances.
However, the flow variables after one failure couple with the
flow variables after another failure only through the decision
variables h in (5). Given h, it is easy to determine whether
there are feasible flows between all the SD pairs after each
failure, by only considering the flow variables and constraints
related to each failure. Benders decomposition can be applied
to problems with such partial separable structure.

1) Benders decomposition: Benders decomposition accel-
erates the calculation of an optimization problem with partial
separable structure and many constraints, and has been applied
to resilient network design [19], [20]. Instead of considering
all the constraints at once, it first solves a relaxed problem that
has only a few constraints, and then check whether there are
any violated constraints. If there is none, the solution is opti-
mal. Otherwise, a violated constraint is added to the relaxed
problem and the problem is solved again. The relaxed problem
is called the master problem, and the violated constraints are
identified by solving subproblems.

The MILP (4) can be reformulated as follows. It starts with
a master problem with constraints only on h.

min ∑
(i, j)∈E

ci jhi j/2

s.t. hi j −h ji = 0 ∀(i, j) ∈ E

hi j = {0,1} ∀(i, j) ∈ E

After obtaining h, check whether there are violated con-
straints by solving subproblems, each corresponding to check-
ing whether the network is connected after each failure. If the
linear program (LP) (6) is feasible and has optimal value 0,
the network is connected after failure z. If it is infeasible, the
associated constraint has been violated.

min 0 (6)

s.t. ∑
{ j|(i, j)∈E}

x(z)sd
i j − ∑

{ j|( j,i)∈E}
x(z)sd

ji =

 1, if i = s
−1, if i = d
0, otherwise

∀s,d (7)

x(z)sd
i j −hi j ≤ 1− t(z)i j ∀(i, j) ∈ E,s,d (8)

x(z)sd
i j ≥ 0 ∀(i, j) ∈ E,s,d

It is more efficient to add the violated constraint by consid-
ering the dual of LP (6). The dual is represented by LP (9),
where dual variables p and r corresponds to primal constraints
(7) and (8), respectively. If LP (9) is unbounded, the constraint
∑sd [p

∗(z)sd
d − p∗(z)sd

s −∑(i, j)∈E(1−t(z)i j +hi j)r
∗(z)sd
i j ]≤ 0 is added

to the master problem, where (p∗(z)sd
d , p∗(z)sd

s ,r∗(z)sd
i j ) is an

extreme ray of LP (9) which led to its unboundedness. The
new constraints avoid unbounded costs along extreme rays, to
guarantee that LP (9) is bounded and that LP (6) is feasible.

max ∑
sd
[p(z)sd

d − p(z)sd
s − ∑

(i, j)∈E
(1− t(z)i j +hi j)r

(z)sd
i j ] (9)

s.t. p(z)sd
j − p(z)sd

i − r(z)sd
i j ≤ 0 ∀(i, j) ∈ E,s,d

r(z)sd
i j ≥ 0 ∀(i, j) ∈ E,s,d

While for the original problem, the MILP has a large num-
ber of variables and constraints, with Benders decomposition
it is possible to solve each subproblem using an LP, and the
size of each subproblem is small. In Benders decomposition,
checking whether a subproblem is bounded corresponds to
checking whether the network is connected after one failure
in our problem. Instead of checking only one failure after
obtaining a new shielding decision in each iteration, multiple
failures can be checked. This is particularly helpful in our
problem since different failures affect different links, and the
links that need to be shielded are likely to be different. The
number of violated constraints added before resolving the
master problem provides a tradeoff between the number of
master iterations and the running time of each iteration. In
our numerical evaluations, the number of constraints that we
added was equal to the number of nodes in the network, and
we observed more than 50% running time saving compared
with the standard Benders decomposition algorithm.

2) Simulated annealing: Finally, we developed a heuristic
based on simulated annealing [27], [28] to solve the problems
faster. Simulated annealing is a method to search for globally
optimal solutions for nonconvex optimization problems. It
starts at an initial state, and then aims to find a neighbor
state, preferably a state with smaller cost. If such a neighbor
state with smaller cost is found, the current state is replaced
with the neighbor state. Otherwise, if the neighbor state has
larger cost, the current state is replaced with the neighbor state
with some small probability. Simulated annealing avoids being
stuck in a local minimum without continuing further searches.
The probability to replace the current state with a neighbor
state that has higher cost depends on the difference of the
costs of the two states. The higher the cost of the neighbor
state, the less likely to enter this state.

Let S be the set of shielded links and Sc be the set of
unshielded links in the current state. Initially, all the links are
shielded. In order to find a neighbor state which differs from
the current state in only one or two shielded links, one of the
following three operations is performed:

1) Randomly remove one link from S.
2) Randomly remove one link from S, and randomly shield

one more link from Sc.
3) Randomly shield one more link from Sc.
In these operations, the probability of removing a link is

proportional to the shielding cost of the link. Thus, links hav-
ing larger shielding costs are more likely to be removed. The
probability of adding a link to the shielded set is proportional
to the multiplicative inverse of its shielding cost, so that links
with small shielding costs are more likely to be added.

Since the objective is to find a neighbor state with smaller
shielding cost, the operations are done sequentially during
the first few iterations of simulated annealing. For example,
after one shielded link is removed (operation 1), if the current
shielding is feasible, a neighbor state with smaller shielding
cost is identified. If any removal of shielded link leads to an
infeasible shielding, one more shielded link is added after the
removal (operation 2) in search of a feasible shielding state.



If neither works, one more shielded link is added without
removing any shielded link (operation 3), in order to retain
a new feasible shielding state.

After finding the neighbor (new) state, next determine
whether to replace the current state with the neighbor state. If
the neighbor state has smaller shielding cost than the current
state, it replaces the current state. On the other hand, if the
neighbor state has larger shielding cost compared with the
current state, it replaces the current state with probability p =
exp(−δ/T ), where δ is the difference between the shielding
costs of the two states and T is the temperature. It is possible
to enter a state with higher shielding cost and avoid being
stuck at a local minimum. If the neighbor state is rejected
(with probability 1− p), perform the last operation (2 or 3)
from the current state and try again.

During the first fewer iterations, T is large so that it is
easy to enter a state that has larger shielding cost to explore
more possible states. As the number of iterations increases,
T decreases to make it less likely to enter a state with
larger shielding cost. At last, T tends to 0 and the algorithm
terminates at a state which has smaller shielding cost compared
to all its neighbors. As suggested by [28], T (t) = d/log (t+1),
where t is the number of iterations and d is a positive constant.
Large enough d, which is at least the amount of cost increase at
any state along the way from any local minimum to the global
minimum, guarantees convergence to the global minimum at
the cost of more iterations for annealing. We set d = 10 in our
algorithm to enable the escape from a local minimum with a
reasonable probability and avoid large computational cost.

If the operations to find a neighbor state are done sequen-
tially, the algorithm may end up in cycles. For example, it is
possible that both operations 1 and 2 cannot find a feasible
shielding state, and the possible neighbor state is to shield
an extra link. Starting from the neighbor state, the only link
that can be removed without causing infeasible shielding is the
link that was just added. Therefore, after some iterations when
many redundantly shielded links are removed, the operations
are done randomly to avoid such cycles.

V. GUARANTEEING PARTIAL CONNECTIVITY

In most networks, a significant number of links need to be
shielded to guarantee the full connectivity of the network. In
fact, even in the tiny disk failure case, links need to be shielded
according to minimum edge covering for cycle structures. The
number of shielded link is at least half the number of nodes.
In larger failure cases or if the network has tree structures,
even more links need to be shielded.

If the connectivity constraint is relaxed and some nodes are
allowed to be separated from the others, shielding cost may
be significantly reduced. The reduction in shielding depends
on the failure model and network topology. For example, if
one node is allowed to be disconnected from the rest, in
cycle structures no link need to be shielded in the tiny disk
failure case, since only the node within the failure region is
disconnected from the others. Similarly, in tree structure, links
incident to degree 1 nodes do not need to be shielded, since

the failure of a link incident to degree 1 node only separates
a degree 1 node from the others.

We determine the optimal shielding to guarantee partial
network connectivity under the general failure model, using
average two terminal reliability (ATTR) as a measure of the
connectivity level. ATTR is calculated by dividing the number
of connected SD pairs after a failure by the total number of
SD pairs in the original network, and represents the fraction of
SD pairs connected after a failure. Compared to MILP (4), the
unit flow constraints are not imposed to every SD pair. Instead,
only a fraction of SD pair are guaranteed to carry unit flow.
In constraints (11), Isd can either take the value 0 or 1, where
Isd = 1 guarantees the connectivity of the SD pair. The total
number of connected SD pair should be at least a fraction α of
all the N(N − 1)/2 SD pairs, guaranteed by constraints (12),
where N is the total number of nodes.

min ∑
(i, j)∈E

ci jhi j/2 (10)

s.t. ∑
{ j|(i, j)∈E}

x(z)sd
i j − ∑

{ j|( j,i)∈E}
x(z)sd

ji =

 I(z)sd , if i = s
−I(z)sd , if i = d
0, otherwise

∀z,s,d(11)

x(z)sd
i j −hi j ≤ 1− t(z)i j ∀(i, j) ∈ E,z,s,d

∑
sd

I(z)sd ≥ αN(N −1)/2 ∀z (12)

hi j −h ji = 0 ∀(i, j) ∈ E

x(z)sd
i j ≥ 0 ∀(i, j) ∈ E,z,s,d

hi j = {0,1} ∀(i, j) ∈ E

Isd = {0,1} ∀(i, j) ∈ E

The above MILP has more variables and constraints than
MILP (4). First, there are the additional variables Isd . More-
over, in MILP (4), we only need to check the connectivity
between node 1 and nodes 2,3, . . . ,N, which is enough to
guarantee the connectivity of the entire network. However, in
MILP (10), we need to check N(N−1)/2 SD pairs. We again
use simulated annealing to find near-optimal solutions. The
only difference compared with the algorithm which guarantees
full connectivity is in determining whether the shielding is
feasible. As long as the ATTR is above α, the shielding is
feasible and is a candidate for the next state.

VI. NUMERICAL RESULTS

A. Full connectivity

We first compare the running time of solving the MILP
using Benders decomposition, solving the MILP directly, and
solving its LP relaxation in Fig. 6. The results are averaged
over 10 instances of Erdos-Renyi random graphs, which suffice
to show the growth of the running time of these approaches.
The number of nodes of the graph is varied from 10 to 30,
with average degree 5. We consider failures that affect the links
adjacent to two nodes. The number of possible attacks for each
graph is

(N
2

)
, where N is the number of nodes in a graph. Note

that solving the MILP directly and solving the MILP using



Benders decomposition both give the optimal solutions, while
solving the LP relaxation only gives lower bounds of optimal
shielding costs. It can be observed that solving the MILP using
Benders decomposition works even faster than solving the LP
relaxation of the MILP directly for larger networks.

Moreover, the modified Benders decomposition (adding
multiple violated constraints in each iteration) reduces the
running time further by more than 50% in most cases as shown
in Table I.
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Fig. 6. Running time comparisons of Benders decomposition, directly solving
MILP and its LP relaxation.

Next we compare the performance of simulated annealing
with the modified Benders decomposition. We observe in
Tables I and II that the running time for simulated annealing is
about 1/10 of that of modified Benders decomposition in larger
network cases, while the relative error is only 3% ∼ 6%.

TABLE I
RUNNING TIME COMPARISONS OF SA, BD AND THE MODIFIED BD FOR

RANDOM GRAPHS

Number
of nodes Degree SA

Time (s)
BD
Time (s)

Modified
BD Time (s)

10 5 0.79 2.26 1.54
15 5 1.70 20.89 10.85
20 5 3.96 90.77 34.96
25 5 10.86 270.69 103.32
30 5 19.20 684.83 195.20

TABLE II
SHIELDING COST COMPARISONS OF SA RESULTS AND EXACT SOLUTIONS

FOR RANDOM GRAPHS

Number
of nodes Degree SA Cost Exact Cost Relative Error

10 5 67.2 64.8 0.037
15 5 141.4 136.2 0.038
20 5 248.0 240.0 0.033
25 5 394.4 374.2 0.054
30 5 551.4 532.8 0.035

Finally we apply our algorithm to obtain the optimal shield-
ing for the XO communication network. Fig. 7 illustrates the

optimal shielding to guarantee the connectivity of the entire
XO backbone network after any disk failure with radius 1◦.
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Fig. 7. Optimal shielding in the XO network to guarantee full connectivity
after any disk failure with radius 1◦.

Simulated annealing also has good performance in solving
the shielding problem for the XO network. The results are
shown in Table III. This advocates the use of simulated
annealing in larger size problems where the exact solution
is too expensive to obtain.

TABLE III
COMPARISON OF SA AND THE MODIFIED BD ALGORITHMS FOR THE XO

NETWORK

Attack
radius

SA
Time (s)

Modified
BD Time (s)

SA
Cost

Modified
BD Cost

Relative
error

1◦ 51.98 109.19 106.6 99.5 0.071
2◦ 64.73 875.12 129.3 121.3 0.065

B. Partial connectivity

The MILP for partial connectivity involves a large number
of variables and constraints, and can only be solved for small
problem instances (were able to solve for networks which
have fewer than 15 nodes). On the other hand, simulated
annealing algorithm which guarantees partial connectivity has
comparable running time with the algorithm which guarantees
full connectivity. The only difference is in determining whether
the shielding is feasible. The shielding costs obtained by the
simulated annealing algorithm are nearly identical with the
exact solutions by solving the MILP for different levels of
ATTR requirement, and are omitted.

Shielding cost is significantly reduced by relaxing the
connectivity constraint to allow α = 95%. This corresponds
to the case that one node is allowed to be disconnected from
the others in XO network (α= 29/30> 95%). Figure 8 depicts
the shielded links in the case where the disk failure has radius
1◦. Table IV suggests that the cost reduction is larger for
smaller failure, and depicts the shielding cost for α = 92%,
which corresponds to the case that two nodes are allowed to
be disconnected.
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Fig. 8. Optimal shielding in the XO network to guarantee that α = 95% after
any disk failure with radius 1◦.

TABLE IV
COST REDUCTION OF PARTIAL CONNECTIVITY FOR XO NETWORK

Attack radius SA Cost
(full connectivity)

SA Cost
(α = 95%)

SA Cost
(α = 92%)

1◦ 106.5 26 5
2◦ 129 86 49.7

VII. CONCLUSION

In this paper we considered the network shielding problem
under geographical and general failure models. We developed
MILP formulations to obtain the minimum cost shielding to
guarantee the connectivity of a single SD pair and the entire
network under the general failure model. To guarantee the
connectivity of a single SD pair under the geographical failure
model, we develop an algorithm to decompose the problem to
multiple subproblems, each of which determines the optimal
shielding for links in a geographical region. The MILP that
guarantees the connectivity of the entire network has partial
separable structure, for which Benders decomposition can be
applied to significantly reduce the running time. A slightly
modified Benders decomposition reduces the running time
further by more than 50%. In addition, simulated annealing
is used to obtain near-optimal solutions with much shorter
running time.

Significantly less shielding cost is required to guarantee
partial connectivity, even in the case where only one node
is allowed to be disconnected from the others. Moreover, we
observe larger reduction in shielding cost if the size of a failure
region is small. The algorithms can be easily modified to solve
the problem which guarantees the connectivity of a selected
set of SD pairs in a network. For example, in the MILP, the
flow constraints can be imposed only for the selected set of
SD pairs. The methodologies in this paper can be used to
construct new and upgrade existing networks to guarantee the
connectivity after any single geographical or general failure.

REFERENCES

[1] J. S. Foster et al., “Report of the commission to assess the threat to the
united states from electromagnetic pulse (EMP) attack, critical national
infrastructures,” Apr. 2008.

[2] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing the
vulnerability of the fiber infrastructure to disasters,” IEEE/ACM Trans.
Netw., vol. 19, no. 6, pp. 1610–1623, Dec. 2011.

[3] P. Agarwal, A. Efrat, S. Ganjugunte, D. Hay, S. Sankararaman, and
G. Zussman, “The resilience of WDM networks to probabilistic geo-
graphical failures,” IEEE/ACM Trans. Netw., vol. 21, no. 5, pp. 1525–
1538, Oct 2013.

[4] S. Borne, E. Gourdin, B. Liau, and A. Mahjoub, “Design of survivable
IP-over-optical networks,” Annals of Operations Research, vol. 146,
no. 1, pp. 41–73, 2006.

[5] H. Kerivin and A. R. Mahjoub, “Design of survivable networks: A
survey,” Networks, vol. 46, no. 1, pp. 1–21, Aug. 2005.

[6] G. Maier, A. Pattavina, S. D. Patre, and M. Martinelli, “Optical network
survivability: Protection techniques in the WDM layer,” in Photonic
Networks Communications, 2002, pp. 251–269.

[7] M. Medard, D. Marquis, R. Barry, and S. Finn, “Security issues in all-
optical networks,” IEEE Network, vol. 11, no. 3, pp. 42–48, May 1997.

[8] Booz Allen Hamilton Inc, “Electromagnetic pulse survivability of t-
elecommunication assets,” Feb 1987.

[9] B. Overton et al., “Microbend-resistant optical fiber,” Mar. 27 2012, US
Patent 8,145,027.

[10] O. Tatat, “Optical fiber telecommunications cable,” Jan. 12 2010, US
Patent 7,646,954.

[11] S. Gibbs, “Google reinforces undersea cables after shark bites,” The
Guardian, Aug. 14 2014. [Online]. Available: http://gu.com/p/4vm78/stw

[12] M. Dziubinski and S. Goyal, “Network design and defence,” Games and
Economic Behavior, vol. 79, no. 0, pp. 30 – 43, 2013.

[13] C. Liu, Y. Fan, and F. Ordez, “A two-stage stochastic programming
model for transportation network protection,” Computers and Operations
Research, vol. 36, no. 5, pp. 1582 – 1590, 2009.

[14] L. V. Snyder, M. P. Scaparra, M. S. Daskin, and R. L. Church, “Planning
for disruptions in supply chain networks,” in Tutorials in Operations
Research. INFORMS, 2006.

[15] W. H. Cunningham, “Optimal attack and reinforcement of a network,”
J. ACM, vol. 32, no. 3, pp. 549–561, Jul. 1985.

[16] R. L. Church, M. P. Scaparra, and R. S. Middleton, “Identifying critical
infrastructure: The median and covering facility interdiction problems,”
Annals of the Association of American Geographers, vol. 94, no. 3, pp.
pp. 491–502.

[17] G. Brown, M. Carlyle, J. Salmerón, and K. Wood, “Defending critical
infrastructure,” Interfaces, vol. 36, no. 6, pp. 530–544, Nov. 2006.

[18] P. Gray, “Exact solution of the fixed-charge transportation problem,”
Operations Research, vol. 19, no. 6, pp. pp. 1529–1538, 1971.
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