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Abstract—We propose an interdependent random geometric
graph (RGG) model for interdependent networks. Based on this
model, we study the robustness of two interdependent spatially
embedded networks where interdependence exists between ge-
ographically nearby nodes in the two networks. We study the
emergence of the mutual giant component in two interdependent
RGGs as node densities increase, and define the percolation
threshold as a pair of node densities above which the mutual
giant component first appears. In contrast to the case for a
single RGG, where the percolation threshold is a scalar, for two
interdependent RGGs, multiple percolation thresholds may exist,
given that a smaller node density in one RGG may increase
the minimum node density in the other RGG in order for a
mutual giant component to exist. We derive analytical upper
bounds on the percolation thresholds of two interdependent
RGGs by discretization, and obtain 99% confidence intervals for
the percolation thresholds by simulation. Based on these results,
we derive conditions for the interdependent RGGs to be robust
under random failures and geographical attacks.

I. INTRODUCTION

Cyber-physical systems such as smart power grids and
smart transportation networks are being deployed towards
the design of smart cities. The integration of communication
networks and physical networks facilitates network operation
and control. In these integrated networks, one network depends
on another for information, power, or other supplies in order
to properly operate, leading to interdependence. For exam-
ple, in smart grids, communication networks rely on electric
power from power grids, and simultaneously control power
generators [1]. Failures in one network may cascade to another
network, which potentially makes the interdependent networks
vulnerable to failures and attacks.

Cascading failures in interdependent networks have been
extensively studied in the statistical physics literature since the
seminal work in [2], where each of the two interdependent
networks is modeled as a random graph. Nodes in the two
random graphs are interdependent, and a node is functioning
if both itself and its interdependent node are in the giant
components of the respective random graphs. After initial
node failures in the first graph, their interdependent nodes in
the second graph fail. Thus, a connected component in the
second graph may become disconnected, and the failures of
the disconnected nodes cascade back to (their interdependent)
nodes in the first graph. As a result of the cascading failures,
removing a small fraction of nodes in the first random graph
destroys the giant components of both graphs.

To model spatially embedded networks, an interdependent
lattice model was studied in [3]. Under this model, geograph-

ical attacks may cause significantly more severe cascading
failures than random attacks. Removing nodes in a finite region
(i.e., a zero fraction of nodes) may destroy the infinite clusters
in both lattices [4].

If every node in one network is interdependent with multiple
nodes in the other network, and a node is content to have at
least one supply node, failures are less likely to cascade [5],
[6]. Although the one-to-multiple interdependence exists in
real-world spatially embedded interdependent networks (e.g., a
control center can be supported by the electric power generated
by more than one power generator), it has not been previously
studied using spatial graph models.

We use a random geometric graph (RGG) to model each of
the two interdependent networks. The two RGGs are allowed
to have different connection distances and densities, which can
represent two networks that have different average link lengths
and scales. These differences between the two networks were
not captured in the lattice model studied in the previous
literature. Moreover, the interdependent RGG model is able
to capture the one-to-multiple interdependence in spatially
embedded networks, and provides a more general framework
for studying interdependent networks.

Robustness is a key design objective for interdependent
networks. We study the conditions under which a positive
fraction of nodes are functioning in interdependent RGGs
as the number of nodes approaches infinity. In this case,
the interdependent RGGs percolate. Consistent with previous
research [2], [3], [5], the robustness of interdependent RGGs
under random failures and geographical attacks is measured
by whether percolation exists after the failures and attacks. To
the best of our knowledge, our paper is the first to study the
percolation of interdependent spatial network models using a
mathematically rigorous approach.

The main contributions of this paper are as follows.

1) We propose an interdependent RGG model for two inter-
dependent networks, which captures the differences in the
scales of the two networks as well as the one-to-multiple
interdependence in spatially embedded networks.

2) We derive the first analytical upper bounds on the per-
colation thresholds of the interdependent RGGs, above
which a positive fraction of nodes are functioning.

3) We obtain 99% confidence intervals for the percolation
thresholds, by mapping the percolation of interdependent
RGGs to the percolation of a square lattice where the
probability that a bond in the lattice is open is evaluated
by simulation.
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4) We characterize sufficient conditions for the interde-
pendent RGGs to percolate under random failures and
geographical attacks. In particular, if the node densities
are above any upper bound on the percolation threshold
obtained in this paper, the interdependent RGGs remain
percolated after a geographical attack.

The rest of the paper is organized as follows. We state the
interdependent RGG model and preliminaries in Section II.
We derive analytical upper bounds on percolation thresholds
in Section III, and obtain confidence intervals for percolation
thresholds in Section IV. In Section V, we study the robustness
of interdependent RGGs under random failures and geograph-
ical attacks. Section VI concludes the paper.

II. MODEL

A. Preliminaries on RGG and percolation
An RGG in a two-dimensional square consists of nodes

generated by a Poisson point process and links connecting
nodes within a given connection distance [7]. Let G(λ, d, a2)
denote an RGG with node density λ and connection distance
d in an a × a square. The studies on RGG focus on the
regime where the expected number of nodes n = λa2 is large.
We first present some preliminaries useful for developing
our model. The giant component of an RGG is a connected
component that contains Θ(n) nodes. A node belongs to the
giant component with a positive probability Θ(n)/n if the
giant component exists. For a given connection distance, the
percolation threshold is a node density above which a node
belongs to the giant component with a positive probability (i.e.,
a giant component exists) and below which the probability
is zero (i.e., no giant component exists). By scaling, if the
percolation threshold is λ∗ under connection distance d, then
the percolation threshold is λ∗c2 under connection distance
d/c. Therefore, without loss of generality, in this paper, we
study the percolation thresholds represented by node densities,
for given connection distances.

The RGG is closely related to the Poisson boolean model
[8], where nodes are generated by a Poisson point process
on an infinite plane. Let G(λ, d) denote a Poisson boolean
model with node density λ and connection distance d. The
difference between G(λ, d) and G(λ, d, a2) is that the number
of nodes in G(λ, d) is infinite while the expected number of
nodes in G(λ, d, a2) is large but finite. The Poisson boolean
model can be viewed as a limit of the RGG as the number
of nodes approaches infinity. The percolation threshold of
G(λ, d) under a given d is defined as the node density above
which a node belongs to the infinite cluster with positive
probability and below which the probability is zero. It has been
shown that a node belongs to the infinite cluster with positive
probability if and only if an infinite cluster exists, and thus
the percolation of G(λ, d) can be equivalently defined as the
existence of the infinite cluster [8]. Moreover, the percolation
threshold of G(λ, d) is identical with the percolation threshold
of G(λ, d, a2) [7], [9].

B. Interdependent RGGs
Two interdependent networks are modeled by two RGGs

G1(λ1, d1, a
2) and G2(λ2, d2, a

2) on the same a × a square.

A node in one graph is interdependent with all the nodes in
the other graph within the interdependent distance ddep. See
Fig. 1 for an illustration. Nodes in one graph are supply nodes
for nodes in the other graph within ddep. The physical inter-
pretation of supply can be either electric power or information
that is essential for proper operation.

Fig. 1. Two interdependent RGGs with interdependent distance ddep.

We define mutual component and mutual giant component
in interdependent RGGs, in the same way as one defines the
connected component and giant component in a single RGG.

Definition 1. Let V 0
i denote nodes in a connected component

in Gi(λi, di, a
2), ∀i ∈ {1, 2}. If each node in Vi ⊆ V 0

i has
at least one supply node in Vj ⊆ V 0

j within ddep, ∀i, j ∈
{1, 2}, i ̸= j, then nodes V1 and V2 form a mutual component
of the interdependent RGGs.

If, in addition, Vi contains Θ(ni) nodes, where ni = λia
2,

∀i ∈ {1, 2}, then V1 and V2 form a mutual giant component.

A mutual component can be viewed as an autonomous sys-
tem in the sense that nodes in a mutual component have supply
nodes in the same mutual component, and in each graph, nodes
that belong to a mutual component are connected regardless of
the existence of nodes outside the mutual component. Note that
a node can receive supply from any of its supply nodes in the
same mutual component. Nodes in a mutual giant component
are functioning, since they are connected to a large number
of nodes in the network. This definition of functioning is
consistent with previous research on interdependent networks
based on random graph models [2].

For a fixed ddep, if a mutual giant component exists in
interdependent RGGs G1(λ1, d1, a

2) and G2(λ2, d2, a
2), then

a mutual giant component exists in interdependent RGGs
G′

1(λ
′
1, d1, a

2) and G2(λ2, d2, a
2), where λ′

1 > λ1. This can
be explained by coupling G′

1 with G1 as follows. By randomly
removing each node in G′

1 independently with probability
1 − λ1/λ

′
1, the remaining nodes in G′

1 has density λ1, and
a mutual giant component exists in the interdependent RGGs
that consist of G2 and the RGG formed by the remaining nodes
in G′

1. Since adding nodes to a graph does not disconnect any
mutual component, a mutual giant component exists in the
interdependent RGGs G′

1 and G2. By the same analysis, a
mutual giant component also exists in interdependent RGGs
G1(λ1, d1, a

2) and G′
2(λ

′
2, d2, a

2) for a fixed ddep, if λ′
2 > λ2.

We define a percolation threshold of two interdependent
RGGs as follows.

Definition 2. A pair of node densities (λ∗
1, λ

∗
2) is a percolation

threshold of two interdependent RGGs, given connection dis-
tances d1, d2 and the interdependent distance ddep, if a mutual
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giant component exists in G1(λ1, d1, a
2) and G2(λ2, d2, a

2)
for λ1 > λ∗

1 and λ2 > λ∗
2, and no mutual giant component

exists otherwise.

For fixed d1, d2 and ddep, there are multiple percolation
thresholds. Intuitively, the larger the node density is in one
graph, the smaller the required node density is in the other
graph in order for the mutual giant component to exist. This
is true in general (with exceptions when the difference between
d1 and d2 is very large or ddep is very large), and is in contrast
with the situation for a single RGG where there is a unique
percolation threshold for a fixed d.

There is a non-trivial phase transition in the interdependent
RGGs. If λi is smaller than the percolation threshold of a
single RGG Gi(λi, di, a

2), clearly there does not exist a mu-
tual giant component in the interdependent RGGs. Therefore,
λ∗
i > 0, ∀i ∈ {1, 2}. As we will see in the next section,

there exist percolation thresholds λ∗
i < ∞, ∀i ∈ {1, 2}, which

concludes the non-trivial phase transition.
Given that the conditions for the percolation of

Gi(λi, di, a
2) and Gi(λi, di) are the same, in most

parts of the paper we study the percolation of two
interdependent Poisson boolean models on the same infinite
plane, GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep), by applying
techniques in continuum percolation. The percolation of
GIntDep is defined as the existence of a mutual infinite cluster,
which consists of an infinite number of connected nodes in
both G1(λ1, d1) and G2(λ2, d2) where every node has at
least one supply node in the same mutual infinite cluster. In
the rest of the paper we sometimes use Gi to denote both
Gi(λi, di, a

2) and Gi(λi, di). The model that it refers to will
be clear from the context.

C. Related work

The model which is closest to ours is the interdependent
lattice model, first proposed in [10] and further studied in
[3], [4]. In this model, nodes in a network are represented
by the open sites (nodes) of a square lattice, where every
site is open independently with probability p. Network links
are represented by the bonds (edges) between adjacent open
sites. Every node in one lattice is interdependent with one
randomly chosen node within distance rd in the other lattice.
The percolation threshold of the interdependent lattice model,
represented by p, is characterized as a function of rd, assuming
the same p in both lattices [10]. Percolation of the model
where some nodes do not need to have supply nodes was
studied in [3]. The analysis relies on quantities estimated by
simulation and extrapolation, such as the fraction of nodes in
the infinite cluster of a lattice for any fixed p, which cannot
be computed rigorously. In contrast, we study the percolation
of the interdependent RGG model using a mathematically
rigorous approach.

III. ANALYTICAL UPPER BOUNDS ON PERCOLATION
THRESHOLDS

In interdependent RGGs, nodes in the mutual giant com-
ponent are viewed as functioning while all the other nodes

are not. Thus, a node is functioning only if it is in the giant
component of its own graph, and it depends on at least one
node in the giant component of the other graph. For any node
b1 in G1, although the number of nodes in G2 within distance
ddep from b1 follows a Poisson distribution, the number of
functioning nodes is hard to calculate, since the fraction of
nodes in the giant component of G2 is unknown. Moreover,
the nodes in the giant component of G2 are clustered, and
thus the thinning of the nodes in G1 due to a lack of supply
nodes in G2 is difficult to characterize. To overcome these
difficulties, we consider the percolation of two RGGs jointly,
instead of studying the percolation of one RGG with reduced
node density due to a lack of functioning supply nodes.

We now give an overview of our approach. We develop
mapping techniques (discretizations) to characterize the perco-
lation of GIntDep by the percolation of a discrete model. Map-
pings from a model whose percolation threshold is unknown
to a model with known percolation threshold are commonly
employed in the study of continuum percolation. For example,
one can study the percolation threshold of the Poisson boolean
model G(λ, d) by mapping it to a triangle lattice and relating
the state of a site in the triangle lattice to the point process of
G(λ, d). By the mapping, the percolation of the triangle lattice
implies the percolation of G(λ, d). Consequently, an upper
bound on the percolation threshold of G(λ, d) is given by λ
for which the triangle lattice percolates, a known quantity [11],
[8]. In general, more than one mapping can be applied, and the
key is to search for a mapping that gives a good (smaller) upper
bound. Following this idea, we propose different mappings
that fit different conditions to obtain upper bounds on the
percolation thresholds of GIntDep.

In this section, we first study an example, in which the
connection distances of the two graphs are the same, to
understand the tradeoff between the two node densities in order
for GIntDep to percolate. we then develop two upper bounds on
the percolation thresholds. The first bound is tighter when the
ratio of the two connection distances is small, and is obtained
by mapping GIntDep to a square lattice with independent bond
open probabilities. The second bound is tighter when the ratio
of the two connection distances is large, and is obtained by
mapping GIntDep to a square lattice with correlated bond open
probabilities.

A. A motivating example

To see the impact of varying the node density in one graph
on the minimum node density in the other graph in order for
GIntDep to percolate, consider an example where d1 = d2 =
2ddep = 2r = d. We apply the same mapping that is used to
obtain an upper bound on the percolation threshold of G(λ, d)
in [11] to obtain upper bounds on the percolation thresholds
of GIntDep.

Consider a triangle lattice where each site is surrounded
by a cell. The lattice bond length is determined such that any
two points in adjacent cells have distance smaller than 2r. The
boundary of the cell consists of arcs of radius r centered at
the middle of the bonds in the triangle lattice. See Fig. 2 for
an illustration. The area of the cell is A = 0.8227r2. A site in
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the triangle lattice is either open or closed. If the probability
that a site is open is strictly larger than 1/2, open sites form
an infinite cluster, and the triangle lattice percolates [11].

Fig. 2. A cell that contains a site in a triangle lattice.

To study the percolation of GIntDep, we declare a site in the
triangle lattice to be open if there is at least one node in its
cell from G1 and at least one node in its cell from G2. If the
triangle lattice percolates, then GIntDep also percolate. To see
this, consider two adjacent open sites in the triangle lattice.
Nodes from Gi in the two adjacent cells that contain the two
open sites are connected, because they are within distance di =
2r (∀i ∈ {1, 2}). If the open sites in the triangle lattice form
an infinite cluster, then nodes from Gi in the corresponding
cells form an infinite cluster Vi (∀i ∈ {1, 2}). Moreover, given
that any pair of nodes in a cell are within distance r ≤ ddep,
each node in Vi has at least one supply node in Vj within the
same cell (∀i, j ∈ {1, 2}, i ̸= j).

Since 1− e−λiA is the probability that there is at least one
node in the cell from Gi and the point processes in G1 and G2

are independent, an upper bound on the percolation thresholds
of GIntDep is given by (λ1, λ2) that satisfies

(1− e−λ1A)(1− e−λ2A) = 1/2.

If λi is large, the percolation threshold λ∗
j approaches the

threshold of a single graph Gj . Intuitively, if λj is above the
percolation threshold of Gj , disks of radius dj/2 centered at
nodes in Gj form a connected infinite-size region. Since λi is
large, nodes in Gi in this region are connected and form an
infinite cluster. Moreover, since ddep = dj/2, all the nodes in
this region have supply nodes, and they form a mutual infinite
cluster.

The above upper bounds on percolation thresholds are still
valid if ddep > di/2, because each node can depend on a larger
set of nodes by increasing ddep and it is easier for GIntDep
to percolate under the same node densities and connection
distances. However, if ddep < di/2, the bond length of the
triangle lattice should be adjusted to r = ddep in order for any
pair of nodes in a cell to be within ddep. The curve (λ1, λ2)
would shift upward. Intuitively, if ddep decreases, the node
density in one network should increase to provide enough
supply for the other network.

B. Ratio d2/d1 is small

Given GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep), without
loss of generality we assume that d1 ≤ d2. Moreover, we
assume that ddep ≥ max(d1/2, d2/2) = d2/2 (see the remark
at the end of the section for comments on this assumption).
Let c = ⌊d2/d1⌋ = max{c : d2/d1 ≥ c, c ∈ N}. For small

c, we study the percolation of GIntDep by mapping it to an
independent bond percolation of a square lattice, and prove
the following result.

Theorem 1. If (λ1, λ2) satisfies

(1− e−λ1d
2
1/8)c(1− e−λ2c

2d2
1/8) > 1/2,

then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates,
where c = ⌊d2/d1⌋, d1 ≤ d2, and ddep ≥ d2/2.

Proof. We first construct a square lattice as follows. Partition
the plane into small squares of side length s = d1/2

√
2. A

large square consists of c×c small squares and has side length
cs. The diagonals of the large squares form the bonds of a
square lattice L, illustrated by the thick line segments in Fig. 3.

The state of a bond in L is determined by the point process
of GIntDep in the large square that contains the bond. A bond
(v1, v2) is open if the following conditions are both satisfied.

1) There is at least one node from G1 in each of the two
small squares that contain the ends (v1 and v2) of the
bond, and they are connected through nodes from G1,
all within the large square of side length cs.

2) There is at least one node from G2 in the large square
that contains the bond.

Fig. 3. Mapping to a square lattice for c = 3.

The first condition is satisfied if there exists a sequence of
adjacent small squares, each of which contains at least one
node in G1, from the small square that contains v1 to the
small square that contains v2. (Each small square is adjacent
to its eight immediate neighbors.) In the example of Fig. 3,
these sequences include 3-5-7, 3-2-4-7, and 3-6-8-7.

To obtain a closed-form formula, instead of computing the
exact probability, we compute a lower bound on the probability
that the first condition is satisfied. The probability is lower
bounded by the probability that the c small squares that
intersect the bond each contain at least one node from G1,
given by

p1 ≥ (1− e−λ1d
2
1/8)c.

The probability that the second condition is satisfied is

p2 = 1− e−λ2c
2d2

1/8.

Given that the two Poisson point processes in G1 and G2

are independent, the probability that a bond is open is p1p2.
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It remains to prove that the percolation of L implies the
percolation of GIntDep. Consider two adjacent open bonds
(v1, v2), (v2, v3) in L. Let S1 and S2 denote the two adjacent
large squares of side length cs that contain the two open bonds.
Let S′

1 and S′
2 denote two adjacent small squares of side length

s that contains v2, within S1 and S2, respectively. See Fig. 3
for an illustration. Since (v1, v2), (v2, v3) are open, under the
second condition, nodes of G2 exist in S1 and S2 and they
are connected, because they are within distance 2

√
2cs ≤ d2.

Under the first condition, nodes of G1 form a connected path
from the small square (within S1, marked as 7 in Fig. 3)
containing v1 to S′

1, and another path from the small square
(within S2) containing v3 to S′

2. Moreover, the two paths are
joined, because any pair of nodes in S′

1 and S′
2 are within

distance 2
√
2s = d1. Given that any pair of nodes within a

large square have distance at most
√
2cs ≤ d2/2 ≤ ddep, all

the nodes have at least one supply node inside the large square
that contains an open bond. To conclude, if the open bonds
in L form an infinite cluster, then the nodes in GIntDep form a
mutual infinite cluster.

The event that a bond is open depends on the point
processes in the large square that contains the bond, and is
independent of whether any other bonds are open. As long as
the probability that a bond is open, p1p2, is larger than 1/2,
which is the threshold for independent bond percolation in a
standard square lattice [12], GIntDep percolate.

The bound can be made tighter for any given c = ⌊d2/d1⌋,
by computing more precisely the probability that the first
condition is satisfied. We provide an example to illustrate the
computation of an improved upper bound.

Example: Consider an example where d1 = 1, d2 = 2ddep =
3. The probability that there is at least one node from G2 in
the large square of side length 3/2

√
2 is p2 = 1− e−9λ2/8.

The probability that a small square contains at least one
node from G1 is ps = 1 − e−λ1/8. The probability that the
first condition is satisfied is

p1 = p3s + (1− ps)p
4
s + (1− ps)p

4
s − (1− ps)p

6
s, (1)

obtained by considering all the sequences of adjacent small
squares. Since p1 computed by Eq. (1) is larger than p3s for
any fixed ps, the bound on λ2 is smaller for any fixed λ1.

C. Ratio d2/d1 is large

In the mapping from GIntDep to the square lattice L, the
condition for a bond to be open becomes overly restrictive
as d2/d1 increases. A path joining the two large squares that
contain two adjacent bonds do not have to cross the small
squares that contain the common end of the two bonds. We
obtain another upper bound on the percolation threshold of
GIntDep, given by the following theorem. This upper bound is
tighter than the upper bound in Theorem 1 for larger values
of d2/d1.

Theorem 2. If (λ1, λ2) satisfies[
1−4

3
(m+1)em log 3(1−p)

][
1−4

3
(2m+1)em log 3(1−p)

]
p′ > 0.8639,

then GIntDep = (G1(λ1, d1), G2(λ2, d2), ddep) percolates,
where p = 1 − e−λ1d

2
1/8, p′ = 1 − e−2D2λ2 , D =

min(d2/
√
10, ddep/

√
5),m = ⌊2D/d1⌋, d1 ≤ d2, and ddep ≥

d2/2.

This upper bound is obtained by mapping GIntDep to a
dependent bond percolation model LD. The mapping from
the Poisson boolean model G(λ, d) to LD was first proposed
in [13] to study the percolation threshold of G(λ, d), and later
applied to the study of the robustness of random geometric
networks [14]. We briefly describe the method in the previous
literature that uses LD to study the percolation of G(λ, d), and
then prove Theorem 2 based on a similar method.

1) 1-dependent bond percolation model LD: In the stan-
dard bond percolation model on a square lattice L, the event
that a bond is open is independent of the event that any other
bond is open. If in a square lattice LD, the event that a bond is
open may depend on the event that its adjacent bond is open,
but is independent of the event that any non-adjacent bond is
open, then LD is a 1-dependent bond percolation model on a
square lattice. With the additional restriction that each bond
is open with an identical probability, an upper bound on the
percolation threshold of LD is 0.8639 [13].

The 1-dependent bond percolation model LD can be used to
study the percolation of G′ where the points are generated by
homogeneous Poisson point processes. To construct a mapping
from G′ to LD, consider two adjacent D×D squares S1 and
S2 and let R be the rectangle formed by the two squares.
A bond (v1, v2) that connects the centers of S1 and S2 is
associated with R. Figure 4 illustrates the square lattice formed
by the bonds, represented by thick line segments.

Fig. 4. Square lattice LD formed by the bonds.

Lemma 3. Let the state of bond (v1, v2) be determined by the
homogeneous Poisson point processes of G′ inside R, and the
conditions for a bond to be open be identical for all bonds.
Then the bonds form a 1-dependent bond percolation model
LD with identical bond open probabilities.

Proof. The event that a bond is open is not independent of
the event that its adjacent bond is open, since the two events
both depend on the point process in an overlapping square.
However, the event that a bond is open is independent of
the event that another non-adjacent bond is open, since their
associated rectangles do not overlap and the point processes
in the two rectangles are independent.

Moreover, a Poisson point process is invariant under trans-
lation and rotation. Given that the points in G′ are generated
by homogeneous Poisson point processes and the conditions
for a bond to be open are identical, the probability that a bond
is open is identical for all bonds.
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By properly setting the conditions for a bond to be open,
the percolation of LD can imply the percolation of G′. We
first look at an example in [12] that studies the percolation
of G′ = G(λ, d), based on which we study the percolation of
GIntDep.

Example [12]: Let a bond be open if a path in G(λ, d)
crosses1 R′ horizontally and another path in G(λ, d) crosses
S′
1 vertically, where R′ is a (2D − 2d)× (D − 2d) rectangle

that has the same center as R, and S′
1 is a (D−2d)×(D−2d)

square that has the same center as S1. The reason for consid-
ering R′ and S′

1 is that the existence of the two crossing paths
over R′ and S′

1 is entirely determined by the point process
within R, while the existence of links within distance d from
the boundaries (and thus the crossings over R) may depend
on nodes outside R.

If two adjacent bonds are open, the paths in G(λ, d) in the
two rectangles are joined. To see this, note that in Fig. 5,
if the black and blue bonds (same direction) are both open,
the crossings 1 and 2 intersect. If the black and red bonds
(perpendicular) are both open, the crossings 1 and 3 intersect.

Fig. 5. Crossings over rectangles associated with two adjacent open bonds
are joined.

If the square lattice LD percolates, open bonds form an
infinite cluster. Paths in G(λ, d) across the rectangles associ-
ated with the open bonds are connected and form an infinite
cluster. Therefore, a node density above which LD percolates
is an upper bound on the percolation threshold of G(λ, d).

2) Proof of Theorem 2: We map GIntDep to LD by letting
a bond in LD be open if the following three conditions are
satisfied in its associated rectangle R = S1∪S2. The size of the
rectangle satisfies D = min(d2/

√
10, ddep/

√
5) ≥ d2/2

√
5.

1) A path from G1 crosses R′ horizontally, where R′ is a
(2D−2d1)×(D−2d1) rectangle that has the same center
as R.

2) A path from G1 crosses S′
1 vertically, where S′

1 is a (D−
2d1)× (D− 2d1) square that has the same center as S1.

3) There is at least one node from G2 in R.
To see that the percolation of LD implies the percolation of

GIntDep, consider any two adjacent open bonds in LD. In the
two rectangles associated with the bonds, 1) paths from G1

that cross one rectangle are joined with paths from G1 that
cross the other rectangle; 2) at least two nodes from G2, one in
each rectangle, are connected by a link in G2, because any two

1A path crosses a rectangle R′ = [x1, x2] × [y1, y2] horizontally if the
path consists of a sequence of connected nodes v1, v2, . . . , vn−1, vn, and
v2, . . . , vn−1 are in R′, x(v1) ≤ x1, x(vn) ≥ x2, y1 ≤ y(v1), y(vn) ≤
y2, where x(vi) is the x-coordinate of vi and y(vi) is the y-coordinate of
vi. A path crosses a rectangle vertically is defined analogously.

nodes in adjacent rectangles are within distance
√
10D ≤ d2;

3) every node in Gi has at least one supply node in Gj inside
the rectangle (∀i, j ∈ {1, 2}, i ̸= j), in which two nodes have
distance no larger than

√
5D ≤ ddep.

If the probability p123 that a bond is open is above 0.8639,
then LD percolates and GIntDep also percolate. An upper bound
on the percolation threshold of GIntDep is a pair of node
densities (λ1, λ2) that yields p123 ≥ 0.8639. In the remainder
of the proof, we compute p123 as a function of (λ1, λ2).

To determine the probability that the first and the second
conditions are satisfied, we consider a discrete square lattice
represented by Fig. 6. Bonds of length d1/2 form a square lat-
tice L′ in a finite md1×md1/2 region, where m = ⌊2D/d1⌋.
Let a bond in L′ be open if there is at least one node from G1

in the d1/2
√
2 × d1/2

√
2 square that contains the bond (the

small square that has dashed boundaries in the figure), which
has probability p = 1 − e−λ1d

2
1/8. It is clear that if the open

bonds form a horizontal crossing2 over L′, then nodes in G1

form a horizontal crossing path over R′.

Fig. 6. Mapping the crossing in G1 to the crossing in a square lattice L′.

Let px(km,m, p) denote the probability that there exists a
horizontal crossing over the km ×m square lattice L′ given
that each bond is open independently with probability p. A
lower bound on px(km,m, p), Eq. (2), can be derived by a
standard technique in percolation theory (e.g., an extension of
Proposition 2 in [15]).

px(km,m, p) ≥ 1− 4

3
(km+ 1)em log 3(1−p). (2)

The probability that the crossing exists is close to 1 if m is
large and p > 2/3.

Finally, the probability that the first condition is satisfied is
p1 ≥ px(2m,m, p). The probability that the second condition
is satisfied is p2 ≥ px(m,m, p). Given that the existence of the
two crossings are positively correlated, by the FKG inequality
[12], the probability that both conditions are satisfied is lower
bounded by:

p12 ≥ p1p2 ≥ px(2m,m, p)px(m,m, p).

The probability that there is at least one node from G2 in
R (i.e., the third condition is satisfied) is p3 = 1 − e−2D2λ2 .
Given that the point processes in G1 and G2 are independent,
the probability that a bond is open is p123 = p12p3. As long
as p123 > 0.8639, GIntDep percolate. This completes the proof.

2A horizontal crossing of open bonds over a rectangle R′ = [x1, x2] ×
[y1, y2] consists of a sequence of adjacent open bonds in the rectangle such
that at least one bond has an endpoint with x-coordinate x1 and at least one
bond has an endpoint with x-coordinate x2. A vertical crossing of open bonds
is defined analogously.
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Example: Consider two RGGs G1 and G2. We study a
model that has a finite number of nodes in this example
in order to quantify d2/d1 as a function of the number of
nodes. The condition of bond open probability 0.8639 for the
percolation of LD still applies to a large but finite 1-dependent
square lattice. If d2 = Ω(d1 log n1), and ddep ≥ d2/2, then
m = Ω(log n1), where n1 is the expected number of nodes in
G1. The probability px(km,m, p) approaches 1 if p > 2/3,
since n1 is large.

According to Theorem 2, by solving p = (1− e−λ1d
2
1/8) =

2/3, and p3 = 1 − e−2D2λ2 = 0.8639, we obtain an
upper bound on percolation threshold λ1 = 8.789/d21, λ2 =
19.94/d22.

Remark: We have assumed that ddep ≥ max(d1/2, d2/2) =
d2/2 in this section. To see that this is a reasonable assump-
tion, note that nodes in G1 that have at least one functioning
supply node are restricted in the region Rdep, where Rdep is a
union of disks with radius ddep centered at nodes in the giant
component of G2. If Rdep is fragmented, it is not likely for
disks of radius d1/2 < d2/2 centered at random locations
within Rdep to overlap, and it is not likely that a functioning
giant component will exist in G1, unless the node density
in G1 is large. Therefore, the interdependent distance ddep
should be large enough so that Rdep is a connected region,
to avoid a large minimum node density in G1. The region
Rdep can be made larger by increasing either λ2 or d2. Setting
ddep ≥ d2/2 avoids increasing λ2 high above the percolation
threshold of G2, in order for Rdep to be connected. In Section
IV, we propose more general approaches that do not require
this assumption.

IV. CONFIDENCE INTERVALS FOR PERCOLATION
THRESHOLDS

In the previous section, we discussed a method of mapping
the percolation of GIntDep to the percolation of the 1-dependent
bond percolation model LD. The previous mapping and the
mapping that we consider in this section both satisfy the
following: 1) the percolation of GIntDep can be implied by the
percolation of LD; 2) the event that determines the state of a
bond depends only on the point process within its associated
rectangle, thus preserving the 1-dependent property. The event
probability can be computed or bounded analytically in the
previous section. In contrast, in this section, we consider events
whose probabilities are larger under the same point processes
but can only be evaluated by simulation. Since the events that
we consider in this section are more likely to occur under the
same point processes, the mappings yield tighter bounds.

Our mappings from GIntDep to LD extend the mappings from
G(λ, d) to LD proposed in [13]. For completeness, we first
briefly summarize the mappings in [13] that determine upper
and lower bounds on the percolation threshold of G(λ, d).

Upper bound for G(λ, d) [13]: Recalling Fig. 4, the event
that a bond (v1, v2) ∈ LD is open is determined by the point
process of G(λ, d) in the rectangle R = S1∪S2, where S1 and
S2 are D ×D squares. Let Vi denote the largest component
formed by the points of G(λ, d) in Si (∀i ∈ {1, 2}). If Vi is
the unique largest component in Si (∀i ∈ {1, 2}) and V1 and

V2 are connected, then the bond is open. Otherwise, the bond
is closed.

If LD percolates, open bonds form an infinite cluster. As a
result, the largest components in D×D squares that intersect
the open bonds are connected in G(λ, d) and they form an
infinite cluster. Therefore, a node density λ, above which the
probability that a bond is open is larger than 0.8639, is an
upper bound on the percolation threshold of G(λ, d).

Lower bound for G(λ, d) [13]: Let the connection process
of G(λ, d) be the union of nodes and links in G(λ, d). Let
the complement of the connection process be the union of
the empty space that do not intersect nodes or links. If
the complement of the connection process form a connected
infinite region, then all the connected clusters in G(λ, d) have
finite sizes and G(λ, d) does not percolate [13], [16]. Consider
the complement of the connection process in rectangle R.
Let a bond (in LD) associated with rectangle R be open if
the complement process forms a horizontal crossing3 over the
rectangle R′ and a vertical crossing over the square S′

1. Recall
that rectangle R′ is the (2D−2d)×(D−2d) rectangle that has
the same center as R, and square S′

1 is the (D−2d)×(D−2d)
square that has the same center as S1, the left square in R.
For example, in Fig. 7, the two crossings that do not intersect
any nodes or links are plotted.

Fig. 7. The horizontal and vertical crossings from the complement of the
connection process over the rectangle.

If LD percolates, the complement process forms an infinite
region and G(λ, d) does not percolate. To conclude, a node
density, under which the probability that the complement
process forms the two crossings is above 0.8639, is a lower
bound on the percolation threshold of G(λ, d).

A. Upper bounds for GIntDep

In G(λ, d), the largest connected component that contains a
node b can be computed efficiently by contracting the links (or
using a breadth-first-search) starting from b. Two components
are connected and form one component if there exists two
nodes within distance d, one in each component. We generalize
these notions in GIntDep as follows.

Let G1 and G2 denote the two graphs in GIntDep. Let
b1 ∈ G1 and b2 ∈ G2 denote two nodes within the interdepen-
dent distance ddep. Algorithm 1 computes the largest mutual
component M(b1, b2) that contains b1 and b2. The correctness
follows from the definition of mutual component.

3The complement of a connection process forms a horizontal crossing over
a rectangle if a curve in the rectangle touches the left and right boundaries of
the rectangle and the curve does not intersect any nodes or links. The vertical
crossing of the complement process is defined analogously.
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Algorithm 1 Computing the largest mutual component that
contains two specified nodes bi ∈ Gi within ddep (∀i ∈ {1, 2}).

1) Identify all the nodes V 0
i (bi) that are connected to bi

(either directly or through a sequence of links) in Gi

(∀i ∈ {1, 2}).
2) Remove nodes in V 0

i (bi) that do not have any supply
nodes in V 0

j (bj) (∀i, j ∈ {1, 2}, i ̸= j). Among the
remaining nodes, identify the nodes V 1

i (bi) ⊆ V 0
i (bi)

that are connected to bi (∀i ∈ {1, 2}).
3) Repeat step 2 until V k+1

i (bi) = V k
i (bi) (∀i ∈ {1, 2}). Let

M(b1, b2) = V k
1 (b1) ∪ V k

2 (b2).

Two mutual components M = V1 ∪ V2 and M̂ = V̂1 ∪ V̂2

form one mutual component if and only if Vi and V̂i are
connected in Gi (∀i ∈ {1, 2}). The necessity of the condition
is obvious. To see that this condition is sufficient, note that
every node in the connected component formed by Vi and V̂i

has at least one supply node which belongs to the connected
component formed by Vj and V̂j (∀i, j ∈ {1, 2}, i ̸= j).
The condition can be generalized naturally for more than two
mutual components to form one mutual component.

The method of obtaining an upper bound on the percolation
threshold of G(λ, d) can be modified to obtain an upper
bound on the percolation threshold of GIntDep, by declaring
a bond to be open if the unique largest mutual components
in the two adjacent D×D squares S1 and S2 are connected.
However, computing the largest mutual component of GIntDep
in a square Si is not as straightforward as computing the
largest component of G(λ, d) in a square Si. In G(λ, d), a
node belongs to exactly one connected component. All the
components can be identified by contracting the links, and the
largest component can be obtained by comparing the sizes of
the components. However, in GIntDep, a node may belong to
multiple mutual components. For example, let b1 and b2 be
two isolated nodes in G1, and let b3 and b4 be two connected
nodes in G2. If both b1 and b2 are within the interdependent
distance from b3 and b4, {b1, b3, b4} and {b2, b3, b4} are two
mutual components. An algorithm that computes the largest
mutual component of GIntDep in a square selects a pair of
nodes, one from each graph, and computes the largest mutual
component that contains the two nodes by Algorithm 1, and
then chooses the largest mutual component over all pairs of
nodes in the square within the interdependent distance. Thus,
it requires much more computation than identifying the largest
component of G(λ, d) in a square.

Instead of optimizing the algorithm and obtaining the
largest mutual component in square S, a mutual component
M greedy(S) can be identified by Algorithm 2. This algorithm
has good performance in identifying a large mutual component
when the square size is large. In particular, if the square had
infinite size, this algorithm would identify an infinite mutual
component if one exists.

Let a bond (v1, v2) in LD be open if the two components
M greedy(S1) and M greedy(S2) form one mutual component.
Since M greedy(Si) is unique in any square Si, a connected
cluster in LD implies that {M greedy(Si)} form one mutual

Algorithm 2 An algorithm that greedily computes a mutual
component M greedy(S) in region S.

1) Identify the largest connected component V 0
i (S) in

Gi(S), where Gi(S) consists of the nodes and links of Gi

in S. If there are multiple largest connected components,
apply any deterministic tie-breaking rule (e.g., choose the
component that contains a nodes with the smallest x-
coordinate).

2) Remove nodes in V 0
i (S) that do not have supply nodes

in V 0
j (S) (∀i, j ∈ {1, 2}, i ̸= j). Identify the largest

connected component V 1
i (S) formed by the remaining

nodes in V 0
i (S) (∀i ∈ {1, 2}), and apply the same tie-

breaking rule.
3) Repeat step 2 until V k+1

i (S) = V k
i (S) (∀i ∈ {1, 2}). Let

M greedy(S) = V k
1 (S) ∪ V k

2 (S).

component in GIntDep, where Si are the squares that intersect
the open bonds in the connected cluster. If the probability that
a bond is open is larger than 0.8639, LD percolates and GIntDep
also percolate.

An alternative condition for a bond to be open is that nodes
in M greedy(R) form a horizontal crossing over rectangle R′

and a vertical crossing over square S′
1 in both graphs (recall

Fig. 5 and the condition for two mutual components to form
one mutual component). In order for the existence of the two
crossings to only depend on the point processes in R, in the
definition of R′ and S′

1, d = max(d1, d2, ddep).
An upper bound on the percolation threshold can be ob-

tained by either approach. The smaller bound obtained by the
two approaches is a better upper bound on the percolation
threshold of GIntDep.

B. Lower bounds for GIntDep

In GIntDep, the connection process consists of nodes and
links in mutual components. To avoid the heavy computation
of mutual components, we study another model in which the
connection process P̃i of Gi in the new model dominates4 the
connection process Pi of Gi in GIntDep (∀i ∈ {1, 2}). As a
consequence, the complement of the connection process P̃ c

i

of Gi in the new model is dominated by P c
i (∀i ∈ {1, 2}). If

P̃ c
i percolates, then P c

i percolates and Pi does not percolate.
If either P1 or P2 does not percolate, then GIntDep do not
percolate. Thus, node densities under which at least one of
P̃ c
1 and P̃ c

2 percolates are lower bounds on the percolation
thresholds of GIntDep.

The new model can be viewed to have a relaxed supply
requirement. In this model, every node (as opposed to nodes
in the same mutual component) is viewed as a valid supply
node for nodes in the other graph. A node bi in Gi is
removed if and only if there is no node in Gj within the
interdependent distance ddep from bi (∀i, j ∈ {1, 2}, i ̸= j).
After all such nodes are removed, the remaining nodes in
Gi are connected if their distances are within the connection

4A connection process dominates another if the nodes and links in the first
process form a superset of the nodes and links in the second process, for any
realization of Gi.
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distance di. The computation of the connection process P̃i is
efficient and avoids the computation of mutual components in
GIntDep through multiple iterations.

The connection process P̃i in the new model dominates
Pi in the original model GIntDep. On the one hand, for any
realization, all the links in Pi are present in P̃i, because all
the nodes in a mutual component have supply nodes, and links
between these nodes are present in the new model as well.
On the other hand, in the new model, nodes in a connected
component Ṽi in Gi may depend on nodes in several connected
components in Gj . In contrast, in GIntDep, Ṽi may be divided
into several mutual components and links do not exist between
two disjoint mutual components.

An algorithm that computes a lower bound on the percola-
tion threshold of GIntDep is as follows. First obtain the connec-
tion process P̃i in the new model. Next in the 2D×D rectangle
R, consider the complement of the connection process P̃ c

i . Let
pi denote the probability that there is a horizontal crossing
over R′ and a vertical crossing over S′

1 in the process P̃ c
i ,

where R′ and S′
1 are the same as before. A lower bound on

the percolation threshold of GIntDep is given by node densities
under which max(p1, p2) ≥ 0.8639.

C. Confidence intervals

The probability that a bond is open can be represented by
an integral that depends on the point processes in the rectangle
R. However, direct calculation of the integral is intractable, so
instead the integral is evaluated by simulation. In every trial of
the simulation, nodes in G1 and G2 are randomly generated
by the Poisson point processes with densities λ1 and λ2,
respectively. The events that a bond is open are independent
in different trials. Let the probability that a bond is open be
p given (λ1, λ2). The probability that a bond is closed in k
out of N trials follows a binomial distribution. The interval
[0.8639, 1] is a 99.5% confidence interval [17] for p, given
that N = 100 and k = 5. If k < 5, p ∈ [0.8639, 1] with a
higher confidence. This suggests that if k ≤ 5, with 99.5%
confidence p ≥ 0.8639 and the 1-dependent bond percolation
model LD percolates given (λ1, λ2).

Based on this method, with 99.5% confidence an upper
bound on the percolation threshold of GIntDep can be obtained
by declaring a bond to be open using the method in Section
IV-A, and with 99.5% confidence a lower bound can be
obtained by declaring a bond to be open using the method
in Section IV-B. For a fixed λ∗

2, a 99% confidence interval for
λ∗
1 is obtained, given by the interval between the upper and

lower bounds. Confidence intervals for different percolation
thresholds can be obtained by changing the value of λ∗

2 and
repeating the computation. We make a similar remark as
in [13]. The confidence intervals are rigorous, and the only
uncertainty is caused by the stochastic point process in the
2D × D rectangle. This is in contrast with the confidence
intervals obtained by estimating whether GIntDep percolate
based on extrapolating the observations of simulations in a
finite region (which is usually not very large because of limited
computational power).

D. Numerical results

The simulation-based confidence intervals are much tighter
than the analytical bounds. Given that d1 = d2 = 2ddep = 1,
and λ∗

2 = 2, the upper and lower bounds on λ∗
1 are 2.25 and

1.80, respectively, both with 99.5% confidence. In contrast,
even if λ∗

2 → ∞, the analytical upper bound on λ∗
1 is no less

than 3.372, which is the best available analytical upper bound
for a single G1 [11]. Confidence intervals for the percolation
thresholds are plotted in Fig. 8.
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Fig. 8. The intervals between bars are 99% confidence intervals for percola-
tion thresholds. The confidence intervals of two different GIntDep are plotted.

V. ROBUSTNESS OF INTERDEPENDENT RGGS UNDER
RANDOM FAILURES AND GEOGRAPHICAL ATTACKS

Removing nodes independently at random with the same
probability in an RGG amounts to reducing the node density
of the Poisson point process. To study the robustness of
two interdependent RGGs G1 and G2 under random failures,
the first step is to obtain the upper and lower bounds on
percolation thresholds. With the bounds, we can determine
which graph is able to resist more random node removals,
by comparing the gap between the node density λi and the
percolation threshold λ∗

i given λj (i, j ∈ {1, 2}, i ̸= j). The
graph that can resist a smaller fraction of node removals is
the bottleneck for the robustness of the interdependent RGGs.
Besides, we can compute the maximum fraction of nodes that
can be randomly removed from two graphs while guaranteeing
the interdependent RGGs to be percolated.

We next show that the interdependent RGGs still percolate
after a geographical attack that removes nodes in a finite con-
nected region, if the node densities of the two graphs before the
attack are above any upper bound on the percolation thresholds
obtained in this paper (either analytical or simulation-based).
Recall that we obtained upper bounds on the percolation
thresholds of GIntDep by mapping the percolation of GIntDep
to the bond percolation of either a standard square lattice L
or the 1-dependent square lattice LD. Moreover, whether a
bond e is open is entirely determined by the point processes
in a finite region Re that contains the bond. After removing
nodes of GIntDep in a connected finite geographical region, the
state of a bond e may change from open to closed only if Re
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intersects the attack region. Let Rf be the union of Re that
intersects the attack region. The region Rf is also a connected
finite region. As long as L or LD still percolates after setting
bonds in Rf to be closed, GIntDep percolate.

Results from the percolation theory indeed indicate that
setting all the bonds in a finite region Rf to be closed does
not affect the percolation of L or LD. For any percolated L,
the probability that there exists a horizontal crossing of open
bonds over a kl × l rectangle approaches 1 for any integer
k > 1, as l → ∞ (Lemma 8 on Page 64 of [12]). The
percolation of L (after setting all bonds in Rf to be closed)
is justified by the fact that the connected open bonds across
rectangles form a square annulus that does not intersect Rf

(shown in Fig. 9), which is a standard approach to prove the
percolation of L [12]. Moreover, the percolation of LD after all
bonds in Rf are closed can be proved in the same approach,
by noting that the probability that open bonds of LD form
a horizontal crossing over a rectangle approaches 1 as the
rectangle size increases to infinity [13].

If the kl× l rectangle is large but finite, the probability that
a horizontal crossing formed by open bonds exists is close
to 1 if L or LD percolates. Therefore, the same analysis
demonstrates the robustness of finite interdependent RGGs
under geographical attacks that remove a positive fraction of
nodes in a connected region.

Fig. 9. Open bonds form a connected path across rectangles around Rf .

The robustness of interdependent RGGs under geographical
failures is illustrated in Fig. 10. Nodes and links in the mutual
giant component are colored black. The interdependent RGGs
still percolate after all the nodes in a disk region are removed.
This is in contrast with the cascading failures observed in [4]
in the interdependent lattice model after an initial disk attack.
One reason may be that every node can have more than one
supply node in our model, while every node has only one
supply node in [4]. The multiple localized interdependence
helps the interdependent RGGs to resist geographical attacks.

VI. CONCLUSION

We developed an interdependent RGG model for interde-
pendent spatially embedded networks. We obtained analytical
upper bounds and confidence intervals on the percolation
thresholds. The percolation thresholds of two interdependent
RGGs form a curve, which shows the tradeoff between the
two node densities in order for the interdependent RGGs to
percolate. The curve can be used to study the robustness of
interdependent RGGs to random failures. Moreover, if the
node densities are above any upper bound on the percolation
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Fig. 10. Interdependent RGGs with the same connection distance d1 = d2 =
1 and ddep = 0.5.

thresholds obtained in this paper, then the interdependent
RGGs remain percolated after a geographical attack.
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