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Abstract—Artificial intelligence (AI) and wireless
communications are catalyzing each other’s advancement
as we approach 6G networks and beyond. This article
presents a perspective on the two-way interplay between
Al and communications—how Al techniques are revolu-
tionizing communication network design (AI4Comm) and
how emerging communication technologies are enabling
and accelerating AI (Comm4AI). We discuss recent ad-
vances and outline the challenges in realizing an Al-native
wireless ecosystem and propose a roadmap for integrating
Al and communications, offering insights into a future
where wireless communications and Al evolve together.
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I. INTRODUCTION

ﬁ s next-generation wireless networks will be enriched
with pervasive multi-modal sensing and artificial intelli-
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gence (Al)-driven services, integrated sensing and communi-
cations (ISAC) and integrated Al and communications emerge
as two key technological paradigms. To achieve Al-native
intelligence integration of communication and multi-modal
sensing, synesthesia of machines (SoM)!!! is a novel paradigm
for future intelligent wireless networks. In particular, SoM-
empowered next-generation wireless networks are envisioned
to be Al-native, with Al deeply embedded in network design
and operation. Meanwhile, the demands of large-scale Al ser-
vices (e.g., foundation models and Al agents) are reshaping
the design of communications and network system architec-
tures. This two-way catalysis between Al and communica-
tions is poised to be a defining feature of 6G and beyond. In
essence, Al will empower more efficient, adaptive, and au-
tonomous communication networks (AI4Comm), while ad-
vances in communications and networks will support and ac-
celerate Al model training, inference, and agent collaboration
(Comm4Al).

Recent developments underscore this synergy. On the
one hand, AI4Comm has yielded powerful data-driven so-
lutions to longstanding wireless challenges. For example,
deep learning and foundation models can predict and opti-
mize wireless channels, protocols, and radio resource alloca-
tion beyond what classical approaches achieve. On the other
hand, Comm4ALI entails rethinking network design to serve
Al workloads: distributing massive models across edge and
cloud, minimizing latency for real-time Al inference, and reli-
ably connecting a proliferation of intelligent agents. The con-
vergence of these trends suggests that 6G networks will not
only incorporate Al, but will be designed with Al as a service
(AlaaS) as a key application scenario.

In this article, we first outline the dual paradigms of
Al4Comm and Comm4Al, setting the stage for detailed high-
lights from the AI4Comm4AIl seminar. Seminar speakers,
listed alphabetically, include Xiang Cheng (Peking Univer-
sity), Ning Ding (Xi’an Jiaotong University), Nan Li (China
Mobile Research Institute), Yong Li (Tsinghua University),
Jing Liang (Huawei), Tailin Wu (Westlake University), Wei
Xu (Southeast University), and Jun Zhang (The Hong Kong
University of Science and Technology). We synthesize ad-
vances across both threads and connect them through the
lens of SoM, the Al-native integration of multi-modal sensing
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and communications that underpins intelligent 6G services.
We highlight progress in AI[4Comm (foundation models for
wireless communications and multiple-input multiple-output
(MIMO) design, network operation and management, and net-
worked system simulation and control) and Comm4AI (6G ar-
chitectures to host large models and agents, wireless networks
for edge learning, and core networks for large model training).
We then list the challenges spanning data, model, computing
and infrastructure, trust, safety and security, and standardiza-
tion and integration that must be addressed to realize Al-native
intelligence. Accordingly, we propose a three-phase roadmap
that evolves from Al-enhanced 5G to an Al-integrated 6G ar-
chitecture and ultimately to Al-native 6G autonomously or-
chestrated by networked Al agents. We conclude with an out-
look on the co-evolution of Al and communications.

II. AI4ComM: ATl FOR COMMUNICATIONS

AI4Comm refers to leveraging Al techniques to solve prob-
lems in communications and networks and advance their sys-
tem designs. This spans a wide range of applications: us-
ing Al for channel estimation and prediction, optimizing an-
tenna beamforming with neural networks, managing network
traffic with Al, and designing protocols that learn and adapt.
Early applications of Al in wireless communications focused
on training deep neural networks for specific tasks. Now, at-
tention is shifting to foundation models and cross-domain Al
that can handle multiple tasks or even entire layers of the net-
work stack. Ref. [2] presents the first systematic investiga-
tion and framework for designing foundation model-enhanced
SoM systems. It emphasizes the significant potential of foun-
dation models to address key challenges within SoM, high-

lighting their promising capability to transform future com-
munication and network infrastructure design paradigms. The
generalization and reasoning abilities of such models make
them attractive for complex communication scenarios that are
hard to explicitly model. These aspects are depicted in Fig. 1
and will be elaborated in the remainder of this section.

A. Foundation Models for Wireless Channel Prediction
and Modeling

One prominent example of AI4Comm is the adaptation of
LLMs for wireless channel prediction. A transformer-based
LLM can be fine-tuned to predict wireless channel state infor-
mation (CSI) sequences by dedicated design to bridge the gap
between channel data and the feature space of the LLM!*!, The
model, termed as large language model for channel prediction
(LLM4CP), leverages a pre-trained LLM as a powerful pre-
dictor of future CSI based on past observations!®!. By transfer-
ring knowledge from vast text-based pre-training to the wire-
less domain, LLM4CP captured complex temporal patterns in
channel fading that conventional methods (e.g., Kalman filters
or simple recurrent models) struggle with. LLM4CP achieved
superior accuracy in predicting channel variations (e.g., due to
user mobility) and reduced prediction error significantly com-
pared to baselines. This work illustrates the promise of fine-
tuning state-of-the-art AI models for communication-specific
tasks.

A wireless foundation model WiFo is designed specifi-
cally for wireless communication!*!. WiFo uses a transformer-
based masked autoencoder architecture aimed at providing
a universal solution for many channel-related tasks. During
self-supervised pre-training, portions of the CSI data across
time, frequency, and antenna domains are masked, and the
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model learns to reconstruct the missing elements. Through
this process, WiFo acquires a robust internal representation of
wireless channels and can handle tasks such as time-series ex-
trapolation and frequency-domain interpolation within a sin-
gle model. The ability to deal with arbitrary patterns of miss-
ing data implies that one foundation model can replace many
task-specific models, greatly simplifying network manage-
ment. In evaluations, WiFo approached or exceeded the accu-
racy of specialized deep networks on various prediction tasks,
while being more flexible. These results mark a shift from
specific Al solutions toward broad Al platforms for commu-
nications.

B. Foundation Models for MIMO Communication Sys-
tem Design

Physical layer tasks such as channel estimation, beamform-
ing and detection interact with the same radio channel, yet to-
day’s practice trains a separate neural network for each task.
To remove this redundancy, CSI Foundation Models! furnish
a lightweight, physics-aware prior for all transceiver mod-
ules. It has a single generative prior that learns the score
function of wide-band MIMO channels from limited clean
CSI or even raw pilot data. By injecting labels such as user
location, link state or weather into the network, one model
can synthesize channels for many scenarios without retrain-
ing, thereby improving sample efficiency and deployment
simplicity. When moving to a new cell, parameter-efficient
fine-tuning updates only a small subset of weights, preserving
latency budgets while coping with local propagation idiosyn-
crasies. Once trained, the score network can be plugged into
diverse downstream modules as a universal prior, dramatically
cutting model count, memory footprint and life-cycle cost.

In addition, AI can reduce feedback overhead and boost
channel recovery in frequency division duplexing (FDD) mas-
sive MIMO. DrCsiNet!®! is a variational auto-encoder frame-
work that disentangles downlink CSI into two parts: an ex-
clusive representation that is unique to the downlink and a
shared representation that is implicitly present in both uplink
and downlink channels. An encoder at the user equipment ex-
tracts and feeds back only the exclusive codeword, while two
networks at the base station derive the shared component di-
rectly from uplink pilots, eliminating redundant transmission.
A representation recovery decoder then fuses both latents to
reconstruct full downlink CSI. Additionally, researchers have
integrated the intrinsic physical characteristics of CSI, such
as spatial and temporal correlations, as well as amplitude
and phase features. By leveraging this expert prior informa-
tion in Al-based CSI compression feedback methods, feed-
back overhead and model complexity have been effectively
reduced. Thus, Al replaces rigid codebooks with adaptive,
reciprocity-aware compression that scales to larger MIMO ar-
rays.

C. Foundation Models for Network Operation and
Management

LLM is able to coordinate multiple task-specific algorithms
already embedded in production networks. An LLM interprets
operator intent in natural language, decomposes it into exe-
cutable plans, invokes specialized monitoring or repair tools,
records outcomes in long-term memory and iteratively refines
actions until key performance indicators are met. This en-
ables zero-touch deployment, fault localization and self heal-
ing across radio access network (RAN) and core domains!”.
Ultimately, the architecture evolves from many siloed mod-
els toward a multi-scene, multi-task unified model that deliv-
ers intent driven, closed-loop network operation and paves the
way for Al-native 6G services.

Rather than treating machine learning modules as add-ons,
a dedicated Al functional framework can be native to 6G sys-
tem design. The framework introduces an Al coordination and
optimization function that orchestrates training, inference and
performance monitoring across distributed base station and
core nodes, thereby enabling closed-loop, data-driven opti-
mization of mobility, load balancing, energy saving and other
RAN procedures. A suite of logical functions can operational-
ize this framework. The intelligent coordination controller is-
sues multi-dimensional resource policies; the computing con-
trol/service functions and data control/service functions man-
age edge compute and data pipelines; while a model man-
agement function governs life-cycle tasks such as version-
ing, retraining and security. These components support hi-
erarchical and distributed intelligence, allowing lightweight
inference to remain at latency-critical layer-1 and layer-2
points while heavier learning tasks are pooled at edge or cloud
aggregators!’ 8!,

Motivated by the shift from specialized, task-centric al-
gorithms to general-purpose agents capable of reasoning,
multi-modal perception and autonomous decision-making,
WirelessAgent!®! is a unified agent architecture that harnesses
LLMs to automate complex 6G network operations. The de-
sign principles include interaction with users, environment
and peer agents; autonomy to act without step-by-step hu-
man supervision; and self-improvement via continual learn-
ing from feedback and new data. WirelessAgent realizes
these principles through four tightly-coupled modules. Per-
ception converts natural-language instructions and raw wire-
less measurements (e.g., CSI, vision, location) into struc-
tured internal representations, relying on LLM text under-
standing plus lightweight translators for non-text modalities.
Memory persistently stores observations and past actions, en-
abling rapid recall of similar situations and reducing repet-
itive mistakes. Planning decomposes a high-level goal into
sub-tasks using LLM reasoning, augments knowledge via
retrieval-augmented generation, and performs reflection be-
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fore and after acting to refine future behaviors. Action ex-
presses decisions through natural-language responses and tool
calls. A case study shows that WirelessAgent achieves lower
resource occupancy, higher slice capacity and adaptive reallo-
cation.

D. Foundation Models for Networked System Simula-
tion and Control

Network Digital Twins create high-fidelity virtual replicas
of mobile networks so that operators can test various poli-
cies without risking live traffic. Generative Al and foun-
dation models transform every stage of the network digi-
tal twin life-cycle, yielding faster, more accurate and more
adaptive simulations!'”. For data processing and network
monitoring, generative models fill spatio-temporal gaps, im-
pute corrupted measurements and flag anomalies, which
raises data fidelity without expensive additional probes. For
digital replication and simulation, generative models learn
the joint distribution of heterogeneous network variables,
including traffic, radio maps, user mobility, and sample
synthetic trajectories at orders-of-magnitude higher speed
while preserving realistic correlations. For optimizer de-
sign and training, high-throughput Al-driven simulators sup-
ply virtually unlimited training data to reinforcement learn-
ing (RL) agents that search spectrum, power or tilt settings.
Diffusion-model-assisted RL further expands the exploration
space, improving sample efficiency and solution quality. For
Sim2Real transition and control, generative Al continuously
refines the digital twin with real telemetry and mitigates the
reality gap, allowing policies learned in simulation to be safely
deployed and updated online.

Both simulation and control can be cast as probabilistic
generation tasks. Diffusion Physical systems Control (Diff-
PhyCon) unifies simulation and control for dynamic physical
systems!'!1, It is first pre-trained on large, heterogeneous tra-
jectories and learns a joint generative distribution over sys-
tem states and control signals. At deployment, objectives,
safety limits and other constraints are injected as extra ener-
gies whose gradients are added to the learned score, so one
pretrained model can be steered toward new tasks, geometries
or operating regimes without retraining. The closed-loop suc-
cessor CL-DiffPhyCon!'?! decouples the denoising schedule
along the physical horizon: early actions are generated with
lower noise, executed on the system, and the measured state
feeds back into the trajectory. This asynchronous scheme pre-
serves performance while cutting sampling cost by up to an
order of magnitude, enabling real-time, robust control of com-
plex systems.

In summary, foundation models have been applied to a
wide range of wireless communication network tasks, deliver-
ing gains in prediction accuracy and system efficiency. Foun-
dation models exhibit strong generalization when they cap-

ture the underlying wireless patterns and transfer knowledge
across domains. For example, a self-supervised foundation
model can learn a robust internal representation of channel
dynamics that supports multiple downstream tasks. A large
model pre-trained on broad data can be fine-tuned to recognize
complex wireless signal patterns that specialized models miss.
At scale, such models exhibit emergent reasoning and the ca-
pacity to abstract common principles (e.g., radio propagation
regularities), which underpins cross-task generalization.

III. ComM4Al: COMMUNICATIONS FOR Al

Comm4AI refers to innovations in communication net-
works specifically aimed at supporting Al applications and
workflows. Task-oriented elastic networks play a crucial role
in supporting complex SoM processing, as they leverage het-
erogeneous resources and dynamically adapt to resource avail-
ability. As Al models grow in scale and complexity, and as Al
services become more pervasive, future networks must meet
new requirements in data delivery, latency, and reliability to
enable these Al systems. These aspects are illustrated in Fig. 2
and will be introduced in this section.

A. 6G for Artificial General Intelligence

6G is envisioned as an Al-native network that tightly in-
tegrates communication with computing and sensing. Rather
than acting solely as a data pipe, 6G forms a unified commu-
nication, sensing, and Al platform. A representative exam-
ple is the Al-integrated radio access network, which embeds
core agent capabilities, such as sensing, cognition, decision-
making, and action, directly into the air interface. The re-
sulting network functions as a neural center that links vast
numbers of intelligent agents, supporting their learning, train-
ing, and inference. By distributing Al processing throughout
the infrastructure, 6G supplies both the computational power
and the ultra-low latency connectivity required to host ad-
vanced Al models across edge and cloud resources. The 6G
core network adopts an agent-based, task-oriented architec-
ture. Every network element may host an intelligent agent,
allowing the infrastructure to self-optimize around applica-
tion intents. Customized network slices are instantiated on
demand and torn down when no longer needed. Function-
ally, the 6G core operates as a distributed computing plat-
form that spans devices, edge, and cloud. Edge devices run
lightweight AI for local sensing and fast inference. Cloud
and core house large foundation models. 6G links orches-
trate the two in real time, creating seamless device-pipe-cloud
synergy. This agent-based, distributed design lets the net-
work coordinate myriad Al agents with minimal latency, mak-
ing 6G an essential enabler of artificial general intelligence
(AGI) by providing the intelligent, adaptive fabric for collec-
tive, general-purpose intelligence!!!.
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Data quality in the network heavily influences the success
of AGI algorithms deployed on it. A data quality assessment
framework tailored for wireless air-interface evaluates wire-
less datasets (e.g., channel state information logs, signal met-
rics, etc.) for similarity and diversity!'*. By quantifying these
aspects, the network can screen and improve its data before
using it for Al model training or inference. By measuring
similarity and diversity, one can select or even generate bet-
ter training data (e.g., channel state samples) that yield more
accurate compression or prediction models. In summary, data
quality management is important and the infrastructure will
need mechanisms to evaluate incoming data streams and cu-
rate datasets so that the Al brain of the network learns from
high-fidelity, representative information.

B. Wireless Network to Support Edge Learning

Wireless network design plays a pivotal role in support-
ing edge learning by ensuring that communication systems
effectively accommodate the challenges of distributed learn-
ing tasks. A key aspect is optimizing resource allocation to
balance communication and learning tasks. Since edge learn-
ing relies on frequent data exchanges and parameter updates
between devices and central aggregators, communication re-
sources such as bandwidth, power control, and scheduling
must be carefully managed to reduce latency and overhead.
Furthermore, edge learning systems often face constraints on
wireless channels, such as fading and interference, which
can degrade learning performance. In this regard, compara-
tive studies of digital versus analog transmission schemes for
wireless federated learning (FL) have provided new insights
into the tradeoffs between communication and learning per-
formance. Advanced methods such as beamforming and dy-
namic scheduling are necessary to enhance the spectral effi-
ciency of the network and reduce communication delays.

To address these challenges, edge learning networks re-
quire joint optimization frameworks that integrate machine

learning algorithms with network design, allowing efficient
computation offloading and task prioritization across de-
vices. Intelligent edge devices, base stations, and the wire-
less medium collaboratively improve learning and inference
performance. Instead of optimizing communication for max-
imum throughput alone, networks will be engineered to max-
imize Al task performance. This includes jointly designing
signaling, processing algorithms, and wireless resources to
meet Al-driven metrics, such as model accuracy or decision
latency, alongside traditional metrics!!®!. In parallel, energy-
efficient edge inference frameworks for integrated sensing,
communication, and computation (ISCC) networks have been
proposed, where techniques such as split inference, model
pruning, and feature quantization are jointly optimized to re-
duce energy consumption under stringent latency and accu-
racy requirements. Such joint optimization also applies to
multi-agent embodied AI which requires real-time learning
and coordination!'®).

C. Core Network to Support Large Models

Training cutting-edge Al (such as billion-parameter neural
networks or federated learning across many devices) often in-
volves splitting computation across multiple servers or edge
devices. This distributed training demands intensive data ex-
change between nodes (for gradient updates, model param-
eters, etc.), which can become a bottleneck. Co-optimizing
computation and communication improves resource utiliza-
tion. For example, scheduling the forward and backward
passes of neural network training in a bidirectional, overlap-
ping manner can improve the utilization of network links.
Beyond static pipelines, adaptive resource allocation in dis-
tributed Al further improves resource utilization. Farseer pre-
dicts an increasing training data to model size ratio as compute
budget increases, which aligns with the actual training config-
urations of recent state-of-the-art LLMs, and facilitates more
efficient evaluation of compute allocation'”!.
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In summary, Comm4AI research recognizes that future Al
workloads, including training massive models, serving dis-
tributed Al applications, or running Al-driven control loops,
will place demands on networks that go beyond what cur-
rent architectures can handle. By innovating in areas like dis-
tributed training protocols, network scheduling for Al traffic,
and Al-native architectural principles, we can ensure that net-
works serve as a powerful platform for Al evolution.

IV. CHALLENGES

Although the synergy between Al and communications
presents significant potential, several critical challenges re-
main that must be addressed to achieve this envisioned future.
We discuss some of the key open issues at the intersection of
Al and communications.

A. Data

Al4Comm solutions typically require extensive datasets,
including channel samples and multi-modal sensor inputs, for
effective training. In particular, wireless foundation model-
based approaches demand significantly greater data diversity
and volume compared to conventional task-specific models.
However, obtaining high-quality, representative datasets for
wireless environments is challenging due to the cost of ex-
tensive measurements and the difficulty of integrating multi-
ple simulation software. Specifically, precise spatio-temporal
alignment across multiple modalities imposes additional chal-
lenges for constructing communication and multi-modal sens-
ing datasets!'® used in SoM research.

B. Model

Although foundation models promise to revolutionize the
design paradigms of Al4Comm and Comm4Al, they en-
counter significant challenges related to multi-modality and
task heterogeneity. On the one hand, to effectively support
future SoM systems, foundation models must simultaneously
process large-scale, diverse wireless and multi-modal sens-
ing data, including CSI, RGB images, depth maps, mmWave
(millimeter wave) radar and light detection and ranging (Li-
DAR) signals. The variations in dimensionality and distribu-
tion across these data types present considerable challenges
for joint processing. On the other hand, foundation mod-
els are also required to concurrently address a broad spec-
trum of Al4Comm and Comm4AlI tasks. Tasks differ in
their input-output formats, objectives, mechanisms, and op-
erational timescales. Consequently, they demand distinct tok-
enization and encoding schemes, input adapters, output heads,
and loss functions, while imposing heterogeneous latency and
robustness requirements. Such factors collectively complicate
unified modeling and end-to-end training.

Moreover, large Al models are expensive to train and de-
ploy. Their size raises questions about feasibility at network
edge devices. Compressing models via pruning, quantization,
or knowledge distillation without sacrificing performance will
be crucial if we expect edge nodes or user devices to run these
large models locally. There is also the risk of model drift
over time as network conditions evolve; continual learning
frameworks might be needed so that models can update them-
selves with new data. Furthermore, combining prior knowl-
edge from communication tasks with model design can create
a network that is not solely data-driven, thereby effectively re-
ducing its complexity. For example, the weighted minimum
mean square error (WMMSE) algorithm can be transformed
into a neural network, and the self-information of CSI can be
leveraged to enhance CSI compression and encoding.

C. Computing and Infrastructure

Realizing AI4Comm and Comm4ALI at scale will require
redesigning the network infrastructure. On the one hand,
embedding Al into many parts of the network (edge infer-
ence, intelligent radio units, core network optimizers) calls
for pervasive computing resources. This may drive a need
for deploying Al accelerators at base stations or aggregation
points, increasing cost and energy consumption. Efficient
hardware utilization, possibly through virtualization and shar-
ing of compute across multiple Al tasks, will be important.
On the other hand, supporting Al applications such as dis-
tributed training or augmented reality/virtual reality (AR/VR)
requires new network services. These could include dedicated
high-bandwidth links on demand, in-network caching of Al
model parameters, or localized data centers for edge Al tasks.
There is also a challenge of scalability—many AI4Comm ap-
proaches have been demonstrated in relatively controlled sce-
narios. It remains to be seen how they perform in large, het-
erogeneous networks with thousands of nodes. Scalability in
terms of both algorithm complexity and orchestration (coor-
dinating learning across many devices) is an open issue.

D. Trust, Safety, and Security

Introducing Al into the control loop of networks implies
that we must trust these models to operate correctly under all
conditions"”!. However, Al models may lack formal guaran-
tees, and ensuring the reliability and safety of AI decisions
is paramount. One approach is uncertainty quantification for
model outputs. By producing calibrated predictive distribu-
tions or confidence sets, the network can attach risk-aware
confidence to channel predictions, anomaly scores, and con-
trol actions. Decisions with high uncertainty can be gated to
conservative fallbacks or human oversight, and constraint sets
can be tightened adaptively when uncertainty spikes. Adver-
sarial attacks are another concern: an attacker might spoof
inputs (such as falsifying sensor data or CSI feedback) to
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mislead an Al model controlling the network. Robustness
against such attacks and secure data exchange for distributed
Al need to be built in. Al algorithms could also inadvertently
reinforce biases (e.g., unfair resource allocation) present in
training data, leading to ethical and regulatory issues in net-
work management. In wireless federated learning, recent
works have explored reconfigurable intelligent surfaces (RIS)-
based interference suppression to ensure unbiased over-the-
air aggregation?”!, as well as zero-trust Byzantine-resilient
frameworks with adaptive clustering to defend against mali-
cious devices, highlighting practical approaches toward ro-
bustness. Thus, alongside performance, aspects of fairness,
accountability, and transparency of Al in communications
must be researched.

E. Standardization and Integration

For Al to truly become native to 6G, standardization bod-
ies (3GPP, ITU, etc.) will need to define interfaces and
frameworks that integrate Al algorithms with traditional net-
work functions. Communications systems are traditionally
designed with rigorous specifications, whereas Al compo-
nents are probabilistic and data-driven. Defining standards for
how models and data are exchanged between network enti-
ties will be necessary to ensure interoperability. Additionally,
the development cycle for Al models is different from that of
network protocols; networks might need to accommodate fre-
quent updates of Al models without disrupting service. The
collaboration between the telecom industry and Al research
community will be essential to address these integration chal-
lenges.

V. ROADMAP TOWARD
AI-NATIVE 6G SYSTEMS

Drawing on the recent developments and the challenges
outlined above, we sketch a high-level roadmap for achiev-

ing the two-way Al-communications integration in 6G. The
path forward is framed in three phases, as shown in Fig. 3.

A. Phase 1: Al-Enhanced 5G Evolution (Short Term)

The focus of Phase 1 is on incremental enhancements:
bringing Al into current-generation (5G/5G-Advanced) net-
works in carefully scoped ways. This includes standardizing
network data analytics functions, applying machine learning
for network optimization (e.g., traffic prediction for dynamic
spectrum allocation), and developing edge platforms for host-
ing Al applications (such as AR/VR processing offload). Im-
portantly, this phase involves extensive prototyping and field
tests to build confidence in Al techniques. We expect to see
“Al in the loop” for specific use cases, such as Al-assisted
mmWave beam management or energy saving features, where
learning-based algorithms run in parallel with legacy algo-
rithms for safety. The near term also involves defining pre-
liminary standards for Al in networks, for example, 3GPP’s
work on AI/ML model exchange, and addressing regulatory
questions about Al decisions in telecom services.

B. Phase 2: Al-Integrated 6G Architecture (Medium
Term)

As we move into the 6G era, Al is expected to be more
deeply integrated into the network architecture. In this phase,
we envision the emergence of a true Al plane in the network: a
layer of functionality dedicated to learning and inference tasks
that support both network operations and user-facing Al ser-
vices. Concretely, 6G standards might include native support
for model distribution (how Al models are broadcast, updated,
and stored at various network nodes) and federated learning
(enabling on-device learning with privacy protection). The
network infrastructure will likely incorporate distributed com-
puting fabric, essentially turning base stations into micro dat-
acenters, so that latency-sensitive Al tasks can be executed
close to users. Networks will begin offering Al quality of ser-
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vice (QoS) guarantees, such as ensuring a certain latency/jitter
bound for AR communication, and perhaps isolating Al traffic
flows to maintain reliability. Standardization efforts will so-
lidify around formats for data and knowledge sharing between
operators’ networks and Al service providers.

C. Phase 3: Al-Native 6G Realization (Long Term)

The long-term vision is to have fully Al-native networks
in operation. In this phase, many network functions could
be autonomously managed by Al agents. For example, a 6G
system might continuously self-optimize using reinforcement
learning agents that tweak parameters (power, spectrum allo-
cation, routing) in real time, with minimal human interven-
tion. The network will expose application program interfaces
(APIs) for third-party Al applications, making the commu-
nication fabric highly programmable. We might see scenar-
ios such as on-demand deployment of an Al-driven network
slice, for instance, a slice optimized for an incoming swarm
of autonomous drones, configured largely by Al analyzing the
situation. Reliability and safety measures for these Al sys-
tems will be entrenched—networks could have fail-safes that
revert to conservative operation if an Al anomaly is detected.
Explainability tools may be integrated so that if regulators or
operators query a decision, the system can provide rationale.
By this phase, the human role in direct network control will
be supervisory; engineers will spend more time defining ob-
jectives and constraints for Al controllers, rather than tuning
low-level algorithms. Achieving this level of autonomy will
likely require surmounting significant technical and trust bar-
riers, but if done successfully, it promises a network that is far
more adaptive and efficient than today’s static configurations.

Realizing a single foundation model that generalizes across
the full spectrum of wireless communication network tasks
remains a long-term objective. Multi-modal datasets mea-
sured and simulated across different frequency bands, mobil-
ity patterns, hardware platforms, and sensing modalities are
essential for robust operation in diverse scenarios. Adap-
tation can be strengthened by attaching domain and task-
specific adapters to a shared backbone and by employing
mixture-of-experts architectures that route tasks to specialized
submodules. Coupled with physics-aware objectives and con-
tinual learning to track distribution shifts, such models can
serve as general-purpose controllers for communication net-
work systems.

VI. CONCLUSION

The convergence of Al and wireless communications is
poised to define the trajectory of 6G networks. AI4Comm
and Comm4Al form a virtuous cycle: advanced Al algo-
rithms unlock new levels of network performance and automa-
tion, while next-generation networks provide the high-speed,

low-latency networks that Al systems need to reach their full
potential. SoM enhances the Al-native integration of com-
munication and multi-modal sensing and accelerates the co-
evolution of Al and communications. We highlighted how
foundation models are adapted to predict channels, simulate
networked systems, and assist in network management. We
also saw how communication principles are influencing Al
system design via techniques such as communication-efficient
distributed training.

Looking ahead, achieving an Al-native 6G systems will re-
quire sustained interdisciplinary collaboration. Wireless ex-
perts and Al researchers must collaborate to design models
that respect communication constraints and networks that are
flexible enough to host Al services. There are still significant
challenges to overcome, ensuring the reliability, security, and
fairness of Al-driven decisions in networks will be as impor-
tant as achieving raw performance gains. The roadmap we
outlined suggests a phased approach—experiment and stan-
dardize in the near term, integrate and optimize in the medium
term, and finally deploy at scale with built-in learning and
adaptation.

In conclusion, the two-way catalysis of Al and communica-
tions offers a compelling vision for the future. Al techniques
will continue to revolutionize how networks are designed and
operated, and advances in communication technology will, in
turn, enable Al to pervade every aspect of our lives. The 6G
era will likely witness this symbiotic relationship delivering
networks that are more adaptive, efficient, and capable than
ever before.
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