
1

Efficient Generalized Engset Blocking Calculation
— Extended version

Jianan Zhang and Lachlan L. H. Andrew

Abstract—Engset’s model of resource blocking with a finite
population has recently been generalized to allow blocked users
to have a recovery time before they re-enter contention for
the resources. We propose an algorithm to find the stationary
distribution of the resulting level-dependent quasi-birth-and-
death (LDQBD) process, and hence the blocking probability. Its
running time is linear in the number of resources (wavelengths)
and the population size (number of input ports).

Index Terms—Blocking probability, generalized Engset formu-
la, level-dependent quasi-birth-and-death process (LDQBD).

I. INTRODUCTION

Engset [1] modelled a telephone system as having a finite
population of users compete for a finite pool of resources.
Upon becoming idle, a user waits an exponentially distributed
amount of time; if at the end of that time a resource is free, the
user places a call (i.e., occupies a resource) of exponentially
distributed duration. At the end of the call, or upon finding all
resources occupied, the user becomes idle again. The model
is used to calculate the probability of blocking, i.e., no free
resources being available at the end of a user’s idle time.

This model has been generalized [2], [3] to model a (well-
multiplexed) bufferless optical packet switch (OPS) [4] or
optical burst switch (OBS) [5], [6]. In this context, a user is
an input port and a resource is an output wavelength channel
that the packet can be placed on to reach its next hop. When
a packet arrives, if it finds no free output channel, then it
is discarded. However, the input port remains occupied while
the packet is being received. Hence, the Generalized Engset
model [2] assumes that a blocked user remains in a “dumping”
(or “frozen” [7]) state for a time before becoming idle again.

This model is related to a model that has nonidentical off-
time for sources considered by Cohen [8] and Syski [9].

The system constitutes a level-dependent quasi-birth-and-
death (LDQBD) process, in which the phase is the number
of busy servers and the level is the number of dumping
servers. Matrix geometric methods can solve the blocking
probability in the LDQBD process [10], [11]. As in [12],
this LDQBD process has a sparse upward transition matrix. It
allows the standard technique for rank 1 upward transitions to
be optimized further, yielding a computation time linear in the
number of phases. This exact algorithm requires computation
comparable to the 1-D Markov approximation of [7], much
less than previous exact solutions (directly solving the balance
equations [2] and block LU decomposition [13]).

II. MODEL AND NOTATION

Unlike Engset’s model, the Generalized Engset model is not
insensitive to the shape of the inter-event distributions. Howev-

er, numerical results [14] suggest that a Markov approximation
gives a good estimate of the blocking probability, and so will
be adopted.

The Generalized Engset model is a continuous time Markov
model with a finite population of M identical users, each in
one of three states: idle, busy or “dumping”. With rate λ,
idle users become either busy, if the total number of busy
users is less than the number of resources K ≤ M, or dumping
otherwise. Busy and dumping users each become idle with
rate µ. Because users are identical, the state of the system is
characterized by the number m of busy users and the number
n of dumping users. The state space of the Markov chain is
X = {(m,n) ∈ N2| 0 ≤ m ≤ K ∧0 ≤ n ≤ M−K}.

In the OBS/OPS application, M is the number of input
channels, K is the number of output channels, and busy users
correspond to input channels whose data is being transmitted
on output channels. Our input model describes the arrival at a
typical OBS switch, rather than the direct output of a burstifier,
because most switches are not edge switches.

To allow the use of standard results for LDQBDs, we
consider an embedded Markov chain by observing the system
when state transitions occur. The embedded chain character-
izes the arrivals and departures of successful and dumping
packets and is sufficient for obtaining the blocking probability.

From states (m,n) (0 < m < K, 0 < n ≤ M − K), the
possible transitions to other states include completion of
a successful transmission (to state (m − 1,n)), cessation of
dumping (to state (m,n − 1)), and new arrival that will be
successfully transmitted (to state (m + 1,n)). The transition
probabilities in the embedded chain are proportional to the
transition rates, normalized to sum to 1, and are given by
mµ/dm,n, nµ/dm,n, and (M−m−n)λ/dm,n, respectively, where
dm,n = (M −m− n)λ+(m+ n)µ is the normalizing constant.
From states (K,n) (0 < n < M−K), when a new packet/burst
comes, the system goes to state (K,n+ 1) because the new
packet/burst is being dumped. The transition probability to
state (K,n+1) is (M−m−n)λ/dK,n. The states and transition
probabilities are depicted in Fig. 1.

The blocking probability can be derived from the steady
state probabilities of the Markov chain. A successful transmis-
sion occurs when the Markov chain is in states (m,n) where
0 < m < K, 0 ≤ n ≤ M−K and the next state is (m+1,n). A
packet/burst is blocked whenever the Markov chain is in states
(K,n) where 0 ≤ n < M−K and the next state is (K,n+1).

III. BLOCKING PROBABILITY

It will be useful to view the transition process as an LDQBD
process [15]. In an LDQBD process, states can be grouped

2

0,M−K
Kλ/d0,M−K--

(M−K)µ
d0,M−K

��

1,M−K
(K−1)λ/d1,M−K

))

µ/d1,M−K

mm

(M−K)µ
d1,M−K

��

. . .

λ/dK−1,M−K..

2µ/dK−2,M−K

mm K,M−K
Kµ/dK,M−K

jj

(M−K)µ
dK,M−K

��
...

2µ
d0,2

��

...

2µ
d1,2

��

...

2µ
dK,2

��

λ
dK−1,M−K

TT

0,1
(M−1)λ/d0,1

++

µ
d0,1

��

1,1
(M−2)λ/d1,1

))

µ/d1,1

kk

µ
d1,1

��

. . .

(M−K)λ/dK−1,1
++

2µ/d2,1

kk K,1
Kµ/dK,1

jj

µ
dK,1

��

(M−K−1)λ
dK,1

TT

0,0
Mλ/d0,0

++ 1,0
(M−1)λ/d1,0

))

µ/d1,0

kk . . .

(M−K+1)λ/dK−1,0
++

2µ/d2,0

kk K,0
Kµ/dK,0

jj

(M−K)λ
dK,0

TT

Fig. 1. State transition probabilities of the embedded Markov chain, where
dm,n = (M−m−n)λ+(m+n)µ.

into levels, indexed by n, such that all transitions occur either
within a single level or between consecutive levels. From
level n, any transition to level n+1 is called a birth and any
transition to level n−1 is a death. In our model, the level of a
state is the number of dumping servers of the state, which takes
a value within {0,1, . . . ,M−K}. States within the same level
are identified by the phase m, which represents the number of
busy servers and takes a value within {0,1, . . . ,K}.

We develop an algorithm based on matrix analytic tech-
niques [10] to obtain the steady state probabilities of the
LDQBD process that characterizes the Generalized Engset
model. The computational complexity of the standard algo-
rithm is cubic in the number of phases. We exploit the sparse
structure of the transition matrices, just as theorem 8.5.2 of
[10] exploits the rank 1 property of the upward transition
matrix. Our algorithm is optimized further, exploiting both
the structure of the other transition matrices, and the fact that
the upward transition matrix has a single non-zero element, to
reduce the complexity to linear in the number of phases.

Let π(n)
m denote the steady-state probability of

(m,n), which has m busy servers and n dumping
inputs. Let π(n) = {π(n)

0 , π(n)
1 , · · · , π(n)

K } group the
steady-state probabilities of states in level n, and
π = {π(0), π(1), · · · , π(M−K)} group the steady-state
probabilities of all states by level. Let the block tridiagonal
P denote the transition matrix, i.e., π = πP. Level n consists
of those states that have n dumping inputs. This results in an
upward transition matrix that has a single non-zero element,
which substantially reduces the complexity of computing the
stationary probabilities. The matrix P is given by

P =

A(0)
1 A(0)

0 0
A(1)

2 A(1)
1 A(1)

0 0
0 A(2)

2 A(2)
1 A(2)

0 0

0
. . .

. . .
. . .

0 A(M−K+1)
2 A(M−K+1)

1 A(M−K+1)
0

0 A(M−K)
2 A(M−K)

1

Blocks of A0, A1 and A2 are (K +1)× (K +1) matrices.

A(n)
0 (i, j) =

(M−n−K)λ

(M−n−K)λ+nµ+Kµ
i = j = K +1

0 otherwise

A(n)
1 (i, j) =

(i−1)µ

(M−n)λ+nµ+(i−1)(µ−λ)
i = j+1 ∈ [2, . . . ,K +1]

(M−n− (i−1))λ
(M−n)λ+nµ+(i−1)(µ−λ)

i = j−1 ∈ [1, . . . ,K]

0 otherwise

A(n)
2 (i, j) =

nµ

(M−n)λ+nµ+(i−1)(µ−λ)
i = j ∈ [1, . . . ,K +1]

0 otherwise

Introduce rate matrix R [10]:

R(n) = A(n−1)
0 (I −A(n)

1 −R(n+1)A(n+1)
2)−1, 1 ≤ n ≤ M−K;

(2)

R(M−K+1) = 0.

We now introduce an algorithm for computing R(n) recur-
sively, from n = M−K. Let

S(n) = I −A(n)
1 −R(n+1)A(n+1)

2 (3)

=

a1,1 a1,2
a2,1 a2,2 a2,3

a3,2 a3,3 a3,4
.

aK,K aK,K+1
aK+1,1 aK+1,2 · · · · · · aK+1,K aK+1,K+1

We introduce the following auxiliary variables. Let q0 = 0,
a∗1 = 1, b∗1 = aK+1,1, and sK+1 = 1, and for i = 1, . . . ,K let

qi =
−ai,i+1

ai,i +ai,i−1qi−1
(4a)

b∗i+1 = b∗i qi +aK+1,i+1 (4b)
si =−b∗i /b∗K+1 (4c)

In addition

a∗i =

{
ai,i−1qi−1 +ai,i for i = 2, . . . ,K
b∗K+1 for i = K +1

(4d)

ti =

{
si for i = K,K +1
si − ti+1ai+1,i/a∗i+1 for i = 1, . . . ,K −1

(4e)

Before we state the algorithm, we state the key property of
R(n) that allows efficient computation.

Theorem 1. The matrix R(n) of (2) is all zeros except for the
last row which is A(n−1)

0 (K +1,K +1) times the row vector r
where ri = ti/a∗i for i = 1, . . . ,K +1 given by (4).

Proof: The proof is constructive, finding the inverse of
S(n) by the Gauss-Jordan algorithm using column operations.
The auxiliary variables are intermediates in this process.

We will construct matrices Q, Q∗, Q′ and Q′′ such that
postmultiplying S(n) by Q eliminates the upper diagonal and
replaces the diagonal by (a∗i)

K+1
i=1 and the off-diagonal elements

3

of the bottom row by (b∗i)
K
i=1; postmultiplying S(n)Q by Q∗ and

then Q′ sets the off-diagonal elements of the bottom row to 0
and then the subdiagonal elements to 0, without changing any
other elements; and finally postmultiplying by Q′′ yields the
identity.

Specifically, Q is the upper triangular matrix Q1Q2 . . .QK ,
where each Qi differs from the identity IK+1 only in that
Qi(i, i+1) = qi given by (4a).

Next, Q∗ is IK+1 with the off-diagonal elements of the last
row replaced by (−b∗i /b∗K+1)

K
i=1.

To cancel the lower diagonal, we proceed from the right, and
so Q′ is the lower triangular matrix Q′ = Q′

K−1Q′
K−2 . . .Q

′
2Q′

1
where each Q′

i differs from the identity IK+1 only in that Q′
i(i+

1, i) =−ai+1,i/a∗i+1. Multiplying Q′
i is a column operation of

multiplying the i+1th column by Q′
i(i+1, i) and adding it to

the ith column. (Note that the matrices are multiplied in order
of decreasing i, and that there are only K − 1 factors, since
the subdiagonal element of the K+1th row was eliminated by
Q∗.)

Finally, Q′′ = diag(1/a∗i) since S(n)QQ∗Q′ = diag(a∗i).
Hence the inverse of S(n) is QQ∗Q′Q′′, and R(n) =

A(n−1)
0 QQ∗Q′Q′′. Since A(n−1)

0 is zero except for element
A(n−1)

0 (K + 1,K + 1), the only non-zero elements of R(n) are
the last row, which are An−1

0 (K +1,K +1) times the last row
of QQ∗Q′Q′′. It remains to show that this last row equals r.

Since the last row of Q is (0,0, . . . ,0,1), the last row of
QQ∗Q′Q′′ is (

−b∗1
b∗K+1

,
−b∗2
b∗K+1

, . . .
−b∗K
b∗K+1

,1
)

Q′Q′′.

Postmultiplying Q′ corresponds to K−1 column operations on(
−b∗1
b∗K+1

,
−b∗2
b∗K+1

, . . .
−b∗K
b∗K+1

,1
)

in order of decreasing i. The result is
(t1, t2, . . . , tK+1). Finally, after postmultiplying Q′′, the result is
(t1/a∗1, t2/a∗2, . . . , tK+1/a∗K+1).

Note that this requires O(K) operations for each R(n)

(roughly 4K multiplications, 4K divisions and 3K additions)1,
giving a total complexity of O(MK).

We are now ready to calculate the steady state probabilities,
which can be done in O(MK) time as follows.

1) Find a solution to π̂(0) = {π̂(0)
0 , . . . , π̂(0)

K }, where

π̂(0) = π̂(0)(A(0)
1 +R(1)A(1)

2) =: π̂(0)A. (5)

Specifically, choose π̂(0)
K arbitrarily and then

π̂(0)
K−1 = π̂(0)

K (1−A(K +1,K +1))/A(K,K +1)

π̂(0)
K−2 = (π̂(0)

K−1 − π̂(0)
K A(K +1,K))/A(K −1,K)

π̂(0)
m =

π̂(0)
m+1 − π̂(0)

m+2A(m+2,m+1)− π̂(0)
K A(K +1,m+1)

A(m,m+1)

for m = K −3, . . . ,0.
2) Apply Theorem 1 to calculate

π̂(n) = π̂(n−1)R(n), n = 1, 2, · · · , M−K. (6)

1 Note also that an alternative O(K) algorithm to calculate R(n) would be to
express S(n) =ET where E is the transpose of an elementary matrix [16] and T
is tridiagonal. The last row of E can be found by the Thomas Algorithm [17],
and the last row of T−1 using [18]. However this approach seems to take
roughly 10K multiplications, 2K divisions and 7K additions.

3) Scale the vectors π̂ uniformly to achieve∥∥∥∑M−K
n=0 πn

∥∥∥
1
= 1.

4) Calculate the blocking probability as

p=
∑M−K

n=0 πn,KA(n)
0 (K +1,K +1)

∑M−K
n=0 (∑K−1

i=0 πn,iA
(n)
1 (i+1, i+2)+πn,KA(n)

0 (K +1,K +1))
.

The computational complexity of the algorithm is O(MK),
which is a significant improvement over the O(MK3) of the
state-of-the-art block LU decomposition algorithm, which has
been shown to be faster than the brute force way of solving
the balance equations of the Markov chain [13].

IV. NUMERICAL TRACTABILITY OF THE ALGORITHM

Since the algorithm aims to solve large scale problems,
numerical tractability of the algorithm should be considered.
Here we consider overflow in computing R(n).

The last row of R(n) is An−1
0 (K + 1,K + 1) times the row

vector r where ri = ti/a∗i . By (4e),

ti =
K

∑
j=i

(s j

j

∏
k=i+1

(−ak,k−1/a∗k)) (7)

for i ≤ K −1. If β > 0 is a lower bound on −ak+1,k/a∗k+1 for
k = K−1, . . . ,1, then the coefficient of sK in ti is at least βK−i.
If β > 1, this can lead to overflow for large K.

The following result shows that the calculations of R(n) is
tractable for n ≥ 1+λ/µ.

Theorem 2. In the calculation of R(n) for 1 ≤ n ≤ M−K we
have qi ∈ (0,1) for all 1 ≤ i ≤ K, and if n ≥ 1+λ/µ then for
all 1 ≤ i ≤ K:

b∗i ∈

(
−

i

∑
k=1

|aK+1,k|, aK+1,i

)
; ti ∈

(
0,

K

∑
j=i

s j

)
.

Proof: First, note the signs of the variables. For i =
1, . . . ,K,

• R(n+1) is non-negative by Theorem 12.1.1 of [10].
• ai,i+1 ∈ (−1,0), since the only contribution is from A(n)

1 .
• ai+1,i < 0. For i ≤ K − 1, ai+1,i ∈ (−1,0) since the only

contribution is from A(n)
1 . For aK+1,K , there is also a non-

positive contribution from R(n+1)A(n+1)
2 .

• ai,i = 1 for i ≤ K, since the only contribution is from I.
• aK+1,i ≤ 0, since the only contribution is from

R(n+1)A(n+1)
2 .

• qi ∈ (0,1). This is shown inductively in Lemma 1 below,
using only the signs of the a j, j±1 not including aK+1,K .

• a∗i ∈ (0,1) by (4d), because qi ∈ (0,1), ai+1,i ∈ (−1,0)
and ai,i = 1.

• b∗i ∈ (−i,0) by induction on (4b) since qi ∈ (0,1) and
aK+1,i ∈ (−1,0). Note that b∗K+1 need not be, since
aK+1,K+1 need not be negative.

• ti ≥ 0 since R(n+1) and a∗i are non-negative and ri = ti/a∗i .
• si ≥ 0 since sK = tK ≥ 0 by (4e) and all si have the same

sign by (4c).
• a∗K+1 = b∗K+1 ∈ (0,1). Positivity follows by (4c), since

b∗i < 0. The upper bound comes from (4b) since the first

4

term is negative and the second is 1 minus a term from
R(n+1)A(n+1)

2 .
• aK+1,K+1 ∈ (0,1); the lower bound is because b∗K+1 > 0.

Using the fact that ai,i = 1 and ai,i±1 < 0 for i = 1, . . . ,K,
it is shown inductively in Lemma 1 below that 0 ≤ qk ≤

(M−n−k+1)λ
(M−n−k+1)λ+nµ < 1 for all 1 ≤ k ≤ K. By (4b), this gives the
bound on b∗i+1. Next, it is shown in Lemma 2 below that
pi :=−ai,i−1/a∗ satisfies the recursion

pi+1 =
−ai+1,i

piai+1,iai,i+1/ai,i−1 +ai+1,i+1
, (8)

whence it is inductively shown that pi ∈ (0,(i−1)/i] for 1+
λ/µ ≤ n ≤ M−K. The bound on ti follows by substituting this
into (7) and noting that ai+1,i < 0.

The following are the two lemmas used in the proof of
Theorem 2.

Lemma 1. Variables 0 ≤ qk ≤ (M−n−k+1)λ
(M−n−k+1)λ+nµ for 1 ≤ k ≤ K

in the calculations of R(n) for 1 ≤ n ≤ M−K.

Proof: The proof is by induction. By (4a),

q1 =
(M−n)λ

(M−n)λ+nµ
.

If 0 ≤ qi−1 ≤ (M−n−i+2)λ
(M−n−i+2)λ+nµ for some i ∈ [2,K], then from

(4a),

0 ≤
−ai,i+1

ai,i
≤ qi =

−ai,i+1

ai,i +ai,i−1qi−1
≤

−ai,i+1

ai,i +ai,i−1

=
(M−n− i+1)λ

(M−n− i+1)λ+nµ
.

Therefore, 0 ≤ qk ≤ (M−n−k+1)λ
(M−n−k+1)λ+nµ for all 1 ≤ k ≤ K.

Lemma 2. In the calculation of tk for n ∈ [1+λ/µ,M −K]
and 2 ≤ k ≤ K, we have 0 <−ak,k−1/a∗k ≤ (k−1)/k ≤ 1.

Proof: Let pi =−ai,i−1/a∗i . This gives the recursion:

pi =
−ai,i−1

a∗i
=

−ai,i−1

ai,i−1qi−1 +ai,i
;

pi+1 =
−ai+1,i

a∗i+1
=

−ai+1,i

ai+1,iqi +ai+1,i+1

=
−ai+1,i

ai+1,i(
−ai,i+1

ai,i+ai,i−1qi−1
)+ai+1,i+1

=
−ai+1,i

piai+1,iai,i+1/ai,i−1 +ai+1,i+1
. (9)

We next inductively prove pk ≤ (k−1)/k in the calculations
of R(n) for n ∈ [1+λ/µ,M−K]. Since q1 =−a1,2,

p2 =
−a2,1

a∗2
=

−a2,1

−a2,1a1,2 +a2,2

=

µ
(M−n−1)λ+nµ+µ

1− µ
(M−n−1)λ+nµ+µ

(M−n)λ
(M−n)λ+nµ

=
µ

nµ+(M−n−1)λ+µ nµ
(M−n)λ+nµ

≤ 1
n
≤ 1

2
.

TABLE I
COMPUTATION TIME AND BLOCKING PROBABILITY FOR THE PROPOSED

ALGORITHM (LDQBD) AND A BENCHMARK (LU [13]). λ = µ = 1.

(M, K)
LDQBD
Time (s)

LU
Time (s)

Blocking
Probability

(200,50) 0.0048 0.0468 5.09×10−1

(200,150) 0.0033 0.2340 1.39×10−13

(600,150) 0.0238 1.321 5.03×10−1

(600,450) 0.0200 13.011 < 1×10−32

Make the inductive assumption pi ≤ (i−1)/i for some i ≥ 2.
Substituting into (9) gives

pi+1 =

iµ
(M−n− i)λ+nµ+ iµ

1− iµ
(M−n− i)λ+nµ+ iµ

(M−n− (i−1))λ
(i−1)µ

pi

=
iµ

(M−n− i)λ+ iµ+nµ− (M−n− (i−1))λpii/(i−1)

≤ iµ
iµ+nµ−λ

≤ i
i+1

where the first inequality uses the inductive hypothesis, and
the last uses n ≥ 1+λ/µ. This establishes the upper bound.

To see that pk > 0, substitute ak,k−1 ∈ (−1,0), qk−1 ∈ (0,1),
and ak,k = 1 (since k ≤ K) into (4d).

Theorem 2 does not guarantee that si will remain small,
since b∗K+1 may become small. However, if si nearly overflows
then ti and ri will be large, since a∗i < 1. Hence π̂(n−1) will
be negligible compared with π̂(n) by (6), and its exact value is
unimportant since π(n−1) will be rounded to 0 by the following
procedure.

Overflow can also arise when for some n and i the ratio of
π(0)

K+1 to π(n)
m is less than the ratio of the smallest to largest

positive values the machine can represent. In this case, no
initial choice of π̂(0)

K+1 can prevent overflow. To avoid overflow,
the partially computed vector π̂ can be rescaled at any stage.
Even if this results in some values such as π̂(0)

K+1 being rounded
down to 0, this will not affect p substantially unless p is itself
close to the smallest positive value that can be represented

V. NUMERICAL RESULTS

Table I compares the running time of this method and block
LU decomposition algorithm. All the results are obtained using
MATLAB software executed on a desktop PC with Intel R⃝

Xeon R⃝, 2.67 GHz CPU, 4 GB RAM and 64-bit operating
system.

We observe considerable improvement in the computation
time of the LDQBD algorithm compared with that of the block
LU decomposition algorithm. Moreover, the computation time
is much less variable, differing by less than a factor of 10,
compared with a factor of over 100 for LU decomposition. As
expected, the blocking probabilities obtained by the LDQBD
algorithm match the results obtained by block LU decomposi-
tion algorithm for the cases in Table I. Moreover, we validated
our algorithm through extensive numerical tests for a wide
range of parameters.

5

To further illustrate the computational efficiency of the
algorithm, Fig. 2 shows the computation time for different
K when M = 200, 20000.

0 50 100 150 200
1

2

3

4

5

6
x 10

−3

 K

tim
e

(s
)

 M = 200

0 0.5 1 1.5 2

x 10
4

5

10

15

20

25

30

 K

tim
e

(s
)

 M = 20000

Fig. 2. Computation time of the blocking probabilities when M = 200, 20000.

VI. DISCUSSION AND CONCLUSION

We have proposed an O(MK) algorithm to calculate the
steady state distribution, and hence blocking probability, of
a generalized Engset model that arises in optical packet
switching and optical burst switching. The proposed algorithm
depends only on the sparsity structure of the transition matrix.
This structure arises in many other applications, such as two-
class priority queues and overflow queues. Those applications
have a more regular structure, and we hope that the techniques
introduced here may yield analytic insights into the perfor-
mance of those applications. QBDs without level dependence
were successfully applied to the analysis of priority queues
with baulking in [19], and finding tail asymptotics of priority
queues in [20].

For the specific case motivated by OPS/OBS networks,
we have also investigated the numerical tractability of the
algorithm, and shown that most of the intermediate values
in the computation can be guaranteed not to cause numeric
overflow. This allows the proposed technique to be applied to
very large switches, including all those that will be developed
for the foreseeable future.

REFERENCES

[1] T. O. Engset, “The probability calculation to determine the number of
switches in automatic telephone exchanges,” Telektronikk, pp. 1–5, Jun.
1991, English translation by Mr. Eliot Jensen.

[2] M. Zukerman, E. W. M. Wong, Z. Rosberg, G. M. Lee, and H. L. Vu,
“On teletraffic applications to OBS,” IEEE Commun. Lett., vol. 8, no. 2,
pp. 116–118, Feb. 2004.

[3] H. Øverby, “Performance modelling of optical packet switched networks
with the Engset traffic model,” Optics Express, vol. 13, pp. 1685–1695,
2005.

[4] M. J. O’Mahony, D. Simeonidou, D. Hunter, and A. Tzanakaki, “The ap-
plication of optical packet switching in future communication networks,”
IEEE Commun. Mag., vol. 39, no. 3, pp. 128–135, 2002.

[5] C. Qiao and M. Yoo, “Optical burst switching (OBS) - a new paradigm
for an optical Internet,” J. High Speed Netw., vol. 8, no. 1, pp. 69–84,
Mar. 1999.

[6] J. S. Turner, “Terabit burst switching,” J. High Speed Netw., vol. 8, no. 1,
pp. 3–16, Mar. 1999.

[7] E. W. M. Wong, A. Zalesky, and M. Zukerman, “On generalizations of
the Engset model,” IEEE Commun. Lett., vol. 11, no. 4, pp. 360–362,
Apr. 2007.

[8] J. W. Cohen, “The generalized Engset formulae,” Philips Telecommuni-
cation Review, vol. 18, pp. 158–170, 1957.

[9] R. Syski, Introduction to Congestion Theory in Telephone Systems.
North Holland, 1959.

[10] G. Latouche and V. Ramaswami, Introduction to Matrix Analytic Meth-
ods in Stochastic Modeling, ser. ASA-SIAM Series on Statistics and
Applied Probability. SIAM, 1999.

[11] D. P. Gaver, P. A. Jacobs, and G. Latouche, “Finite birth-and-death
models in randomly changing environments,” Adv. Appl. Prob., no. 4,
pp. 715–731, Dec. 1984.

[12] J. F. Pérez and B. Van Houdt, “Quasi-birth-and-death processes with
restricted transitions and its applications,” Performance Evaluation,
vol. 68, no. 2, pp. 126–141, 2011.

[13] N. Akar and Y. Gunalay, “Stochastic analysis of finite population
bufferless multiplexing in optical packet/burst switching systems,” IEICE
Trans. Commun., vol. E90-B, no. 2, pp. 342–345, 2007.

[14] J. Zhang, Y. Peng, E. W. M. Wong, and M. Zukerman, “Sensitivity of
blocking probability in the generalized engset model for OBS,” IEEE
Commun. Lett., vol. 15, no. 11, pp. 1243–1245, Nov. 2011.

[15] L. Bright and P. G. Taylor, “Calculating the equilibrium distribution
in level dependent quasi-birth-and-death processes,” Stochastic Models,
vol. 11, no. 3, pp. 497–525, 1995.

[16] R. Brayton, F. Gustavson, and R. Willoughby, “Some results on sparse
matrices,” Math. Comp., vol. 24, no. 112, pp. 937–954, 1970.

[17] E. Süli and D. Mayers, An introduction to numerical analysis. Cam-
bridge University Press, 2003.

[18] R. Usmani, “Inversion of a tridiagonal Jacobi matrix,” Linear Algebra
and Its Applications, vol. 212, pp. 413–414, 1994.

[19] S. Drekic and D. G. Woolford, “A preemptive priority queue with
balking,” Eur. J. Oper. Res., vol. 164, no. 2, pp. 387–401, 2005.

[20] H. Li and Y. Q. Zhao, “Exact tail asymptotics in a priority queue –
characterizations of the preemptive model,” Queueing Systems, vol. 63,
no. 1-4, pp. 355–381, 2009.

