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Abstract—Base station (BS) sleep mode operation is one of the
effective ways to save energy, but it may lead to longer delay to
the customers. In order to evaluate the tradeoffs between energy
consumption and customer delay, we model the BS sleep mode
operation as an N-policy M/G/1 vacation queue with setup and
close-down times, where the BS enters sleep mode if no customers
arrive during the close-down time after the queue becomes empty
and it starts to setup when it sees N customer arrivals during
its sleep period. Several closed-form formulas are derived to
demonstrate the tradeoffs between energy consumption and mean
delay by changing the close-down time and N. It is shown that
the relationship between the energy consumption and the mean
delay is linear by changing the close-down time. Besides, larger N
reduces the energy consumption, but there may exist N > 1 that
minimizes the mean delay. We also investigate the bound on given
percentile of overall delay. We observe that the delay bound is
nearly linear in mean delay in the cases tested. Therefore, similar
tradeoffs exist between energy consumption and the delay bound.

I. INTRODUCTION

Recently, it has been reported that information and commu-

nication technology (ICT) industry is becoming a significant

part of the world energy consumption. Cellular networks

are among the main energy consumers in the ICT field.

Specifically, base stations (BSs) account for over 80% of the

cellular network energy consumption [1]. Therefore, in order

to support increasing data transmission rate, energy efficiency

is key in future BS operations [2].

Sleep mode operation is an effective way to save energy

while maintaining acceptable quality of service (QoS) [2], [3],

[4], [5], [6], [7], [8]. To save energy, a BS can be turned off

when the traffic load is light, but the quality of service will

deteriorate accordingly. In [3], the authors investigate energy

saving sleep mode operations while maintaining acceptable

throughput received by users. Based on a Markovian model,

they solve a set of balance equations and obtain the probability

that users achieve the target throughput. [4], [5] consider

sleep mode operations with blocking probability constraint in

a cellular network.

In this paper, we consider the energy-delay tradeoff because

delay performance is a key metric in mobile multimedia

communications, i.e., how much energy can be traded off by
a certain amount of delay? In [9], it has been shown that

the tradeoffs do exist between average transmission power

and average buffer delay by changing the transmission rate,

but the BS sleep operation was not considered. We consider

energy-delay tradeoffs in BS sleep mode operation and assume

fixed transmission rate when the BS is turned on. When a BS

is turned off, customers have to wait until the BS wakes up

and therefore experience longer delay. We aim to investigate

how much energy can be traded off by the queueing delay in

terms of the BS sleep time, setup time, and close-down time.

We focus on the cases where the sleep mode operations do

not affect customer arrival processes, and do not consider the

benefit of coordinated multi-point [10] or cell zooming [11],

where a customer can be served by a neighboring BS.

We derive closed-form formulas to demonstrate the trade-

offs between energy consumption and mean queueing delay,

which depend on control policies. For example, by changing

the close-down time, BS energy consumption is a linear

decreasing function of mean delay. However, by changing

the number of customers that intrigue BS setup, the energy

consumption is not necessarily decreasing in delay. Moreover,

we demonstrate by numerical studies that the nearly linear

relationship between the mean delay and the delay bound

on given percentile of delay exists. Therefore, the tradeoffs

between energy consumption and mean delay well indicate the

tradeoffs between energy consumption and the delay bound.

II. BS SLEEP MODE MODELING

A. M/G/1 Vacation Queue with Setup and Close-down Times

We model a BS as a N-policy M/G/1 queue with close-

down and setup times. Customers arrive in a Poisson process

with parameter λ. Service times follow a general distribution

with mean 1/μ. When the queue becomes empty, the server

keeps waiting during the close-down time, which follows a

general distribution. If new customers arrive during the close-

down time, the server immediately starts its service without

setup. But when the close-down time expires and no customers

arrive, the server will be turned to sleep mode. During the

sleep period, if N customers have arrived, the server starts to

setup and then to serve new customers. This queuing model

was introduced in [12]. The switch-over cost of the BS is

considered as the setup time and the power consumption

during the setup time. To find the tradeoffs between energy

and delay, and to design effective sleep policies, we consider

the effects of the close-down time and N on energy and delay.

In general, longer close-down time will lead to shorter

waiting time of customers, because customers which arrive

during the close-down time will be served immediately without

setup time. However, since the BS is idle in close-down time,



it consumes more power compared with the case where the BS

enters sleep mode immediately after serving all customers.
The switch-over cost is an impediment of frequently turning

on and off the BS. Both longer close-down time and larger N
avoid frequent switch-over and the energy cost.

In an N-policy M/G/1 queue with close-down and

setup times, let B, S, and D denote the service time for a

customer, the setup time and close-down time for the server,

respectively. Let B̃(s), S̃(s), and D̃(s) denote the Laplace-

Stieltjes transforms of their probability density functions. The

probability that no customers arrive during the close-down

time is D̃(λ). The mean length of a cycle E[C] (time between

two successive epochs at which the queue becomes empty) is

given by [13]:

E[C] = [1− D̃(λ)](
1

λ
+

E[B]
1−ρ

)

+ D̃(λ)(
N
λ
+

E[S]+NE[B]
1−ρ

)

=
1− D̃(λ)+ D̃(λ)(N +λE[S])

λ(1−ρ)
,

where ρ = λE[B].
We then obtain the Laplace-Stieltjes transform of the

density function for customer’s sojourn time, which includes

both the waiting time in the queue and the service time,

T̃ (s) =
B̃(s)
E[C]

{1− D̃(λ)
λ

+
(1− D̃(λ))E[B]

1−ρ
(1−ρ)(1− B̃(s))

E[B][s−λ+λB̃(s)]

+ D̃(λ)
N
λ

S̃(s)
N

[λ/(s+λ)]N − [B̃(s)]N

λ/(s+λ)− B̃(s)

+ D̃(λ)
1− S̃(s)(B̃(s))N

s−λ+λB̃(s)
}. (1)

Here we correct an error in the Laplace-Stieltjes transform of

the density function for waiting time in the queue (W̃ (s) =
T̃ (s)/B̃(s)) on page 136 of [13].

Differentiate Eq. (1) at s = 0, we obtain the mean sojourn

time, which is in consistent with the result obtained by [12]:

E[T ] = E[B]+
λE[B2]

2(1−ρ)

+
D̃(λ)[N(N −1)+2NλE[S]+λ2E[S2]]

2λ[D̃(λ)(N +λE[S])+1− D̃(λ)]
. (2)

Let PON, PSL, PST and PCD denote the power consumption

of the BS during its on, sleep, setup, and close-down phases,

respectively. The long time average operation power is:

E[P] =
1

E[C]
[
1− D̃(λ)

λ
(PCD −PSL)

+ D̃(λ)E[S](PST −PSL)]

+ (1−ρ)PSL +ρPON. (3)

B. Impact of Close-down Time

We investigate the closed form relationship between mean

power and mean sojourn time by changing close-down time.

From Eq. (2) and Eq. (3), we can see the close down

time D affects E[T ] and E[P] through the probability that

no customers arrive during the close-down time (D̃(λ)). In

Eq. (2), E[T ] is monotonically increasing in D̃(λ). This can

be explained as: smaller D̃(λ) means more customers arrive

during the close-down time and be served immediately without

setup time.

In addition, we obtain D̃(λ) as a function of E[T ] from Eq.

(2), then substituting D̃(λ) in Eq. (3), we obtain the linear

relationship between E[P] and E[T ], given by

E[P] = ρPON +(1−ρ)PCD

+ (1−ρ)
2λ[E[T ]−E[B]−E[B2]λ/2(1−ρ)]

E[S2]λ2 +2NE[S]λ+N(N −1)

× [E[S]λ(PST −PSL)

− (N +E[S]λ)(PCD −PSL)].

C. Impact of N

The server is turned on when there are N customers present

in the queue. Larger N leads to longer cycle. Therefore, the

server goes to setup less frequently. For simplicity, consider

the special case where the close-down time equals to zero, i.e.

D = 0 (D̃(λ) = 1). In this case, mean power of N-policy is

equivalent to a 1-policy system which has E[S]/N mean setup

time, given by

E[P] = ρPON +(1−ρ)PSL +
λ(1−ρ)E[S]

N +λE[S]
(PST −PSL). (4)

However, the mean sojourn time is not necessarily mono-

tonically increasing in N, given by

E[T ] = E[B]+
λE[B2]

2(1−ρ)
+

N(N −1)+2NλE[S]+λ2E[S2]

2λ(N +λE[S])
.

(5)

If we generalize N to real numbers, in condition that√
C2

S +1/(λE[S]) > 1, there exists an Ndelay optimal that min-

imizes E[T ], i.e.,

Ndelay optimal = λE[S](
√

C2
S +1/(λE[S])−1),

where C2
S is the squared coefficient of variation of the setup

time. If
√

C2
S +1/(λE[S])≤ 1, E[T ] is monotonically increas-

ing in N for N > 0.

By changing N, the relationship between E[P] and E[T ] is:

E[T ] =
C2

SλE[S]+1

2λ
A+

E[S]
2A

+E[B]+
λE[B2]

2(1−ρ)
− 1

2λ
,

where

A =
E[P]− (ρPON +(1−ρ)PSL)

(PST −PSL)(1−ρ)
.



D. Delay Bound

To meet the required QoS guarantee, customers need to

be served within their tolerable delay with high probability.

Consider the delay bound denoted by T ε
max, which means that

the probability that the overall delay of a customer exceeds

Tmax is ε. Let ε be arbitrarily small to satisfy the QoS

requirement. We obtain the probability density function of the

overall delay by inverse Laplace transform of Eq. (1). Then

we calculate the tail probability and obtain T ε
max.

III. NUMERICAL RESULTS

In this section we provide numerical results to demonstrate

the impacts of close-down time and N on BS performance

and energy saving, and the tradeoffs between mean power

and mean sojourn time. We also investigate the relationship

between mean sojourn time and T 0.01
max . In all these cases,

customers arrive as a Poisson process with rate λ. When the BS

is transmitting data at rate μ, the power is PON. When the BS

is in setup or close-down phases, PST = PCD = 0.9PON, which

is justified in [2] as the power consumption in idle state. We

assume that BS power consumption during sleep is 0.2PON.

A. Impact of Close-down Time

Figure 1 depicts the effects of the close-down time on

the mean sojourn time and mean power. The setup time is

deterministic and equals to 1/μ. The close-down and service

times follow exponential distribution. We consider different

load conditions, and assume N = 1. Since the distribution of

close-down time is given, as the mean close down time (E(D))
increases, the probability that no customers arrive during the

close-down time (D̃(λ)) decreases. Hence, we changes the

mean close down time to see the relationship. We observe that

as the close-down time increases, the mean power increases

and mean sojourn time decreases. In light load conditions,

sleep mode brings more benefits on energy saving.

Figure 2 depicts the linear relationship between the mean

power and mean sojourn time for different N. Other parame-

ters, such as λ, μ, E[S], C2
S , C2

B, have effects on the slope of

the linear function, but the linear relationship always exists.

B. Impact of N

Figure 3 depicts the effects of N on the mean sojourn

time and mean power. Mean setup time equals to 1/μ. We

consider both light load and heavy load conditions, i.e, ρ =
λ/μ= λE[S] = 0.1, and 0.8. We also consider the effects of the

deviation of setup time, and let C2
S = 0, and 25. The deviation

of setup time does not affect the mean power, which is given

by Eq. (4). Let Twait denote the waiting time of a customer that

arrives during the sleep time until the server starts to setup,

i.e., the time interval between one customer arrival and the

epoch when the Nth customer arrives during the sleep phase. In

light load conditions, the inter-arrival time between customers

is long, and Twait dominates the mean sojourn time for large

N. In such cases, mean sojourn time is increasing in N. In

heavy load conditions, Twait is comparable with the setup time.

By increasing N, the server goes to setup less often, and the
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Fig. 1. Mean sojourn time (normalized by 1/μ) and mean power (normalized
by PON) vs. mean close-down time (normalized by 1/μ) in an 1-policy M/M/1
queue with exponentially distributed close-down time and deterministic setup
time. E[S] = 1/μ.
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Fig. 2. Mean sojourn time (normalized by 1/μ) vs. mean power (normalized
by PON) in an N-policy M/M/1 queue with exponentially distributed close-
down time and deterministic setup time (changing the close-down time). ρ =
0.1, E[S] = 1/μ.

benefit may outweigh the cost of longer Twait, especially when

the deviation of setup time is large. Therefore, there may exist

N > 1 that minimizes the mean sojourn time given by Eq. (5).

Figures 4 and 5 depict the relationships between the mean

sojourn time and mean power. Since larger N always reduces

mean power, but not necessarily increases the mean sojourn

time, mean power may not be a monotonically decreasing

function in the mean sojourn time as depicted in Fig. 5.

C. Mean Delay vs. Delay Bound

We consider the relationship between the mean sojourn

time and T 0.01
max . From cases we studied, the relationship

between E[T ] and T 0.01
max is almost linear and depicted in

Fig. 6. We obtain these cases by changing the close-down

time. For simplicity, we assume that the setup times follow
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Fig. 3. Mean sojourn time (normalized by 1/μ) and mean power (normalized
by PON) vs. N in an N-policy M/M/1 queue with close-down and setup times.
E[S] = 1/μ.
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Fig. 5. Mean sojourn time (normalized by 1/μ) vs. mean power (normalized
by PON) in an N-policy M/M/1 queue with close-down and setup times
(changing N). E[S] = 1/μ, λE[S] = 0.8, C2

S = 25.

exponential distribution, and thus simplify the calculations of

inverse Laplace transforms and tail probabilities. We consider

cases where the service times follow exponential or hyper-

exponential distribution, where p1 = 0.8, p2 = 0.2, μ1 =
8, μ2 = 2/9, C2

B = 7.125. We observe that although larger

deviation of setup and service times leads to significantly

larger T 0.01
max , the nearly linear relationship still exists.
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Fig. 6. T 0.01
max vs. mean sojourn time (both normalized by 1/μ) in a 1-policy

M/M/1 queue with close-down and setup times (changing the close-down
time).

Cases in Fig. 7 have the same distributions of service, setup,

close-down times as in Fig. 6. The only difference is that we

aim to investigate the effect of N, and therefore we obtain

different sojourn times by changing N rather than the close-

down time. We observe that by changing N from 1 to 5, the

mean sojourn time is also nearly linear with T 0.01
max . Moreover,

T 0.01
max is not very sensitive to the deviation of service time.

One reason is that the effects of setup time on service delay

diminish as N increases. Another reason is that Twait dominates

the delay as N increases. Note that we consider light load

conditions for the BS sleep mode operation.

IV. CONCLUSION

Energy can be traded by delay in BS sleep mode operation.

The tradeoffs between energy consumption and delay depend

on BS control policies. We derive closed form relationships

between mean power and mean overall delay based on an

N-policy M/G/1 queue with setup and close-down times. By

changing the close-down time, mean power is a monotonically

decreasing linear function of the mean delay. By increasing

N, mean power decreases, but there may exist N > 1 that

minimizes the mean delay, in which case energy may not be

monotonically decreasing in delay.

We observe nearly linear relationship between the mean

delay and the bound on given percentile customer delay from

the cases we tested. The nearly linear relationship is not very

sensitive to the distributions of service time. Therefore, similar

tradeoffs exist between mean power and the delay bound. For

the control policies discussed in this paper, by limiting the
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mean delay to a corresponding level, they guarantee with given

high probability that customers be served within their tolerable

delay.
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