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Abstract—We study scheduling algorithms to minimize the Age
of Information (AoI) regrets under non-stationary channels in a
drifting environment, where the probability that a channel can
successfully transmit a packet varies over time and the total
variation of probabilities across adjacent time slots is bounded.
We characterize the AoI regret lower bound for single-source
and multi-source systems, and prove that a restarted channel
scheduling algorithm achieves an AoI regret within a logarithmic
factor gap from the lower bound for a single-source system. We
augment the above channel scheduling algorithm with a source
scheduling algorithm to support multiple source transmissions
where sources are decoupled from channels. In addition, we
develop a scheduling algorithm for multiple source transmissions
where sources and channels are coupled, and characterize the AoI
regret upper bounds.

Index Terms—Scheduling, Age of Information, reinforcement
learning, non-stationary channel.

I. INTRODUCTION

With the emergence of time-sensitive applications in au-
tonomous driving and multi-agent systems, real-time infor-
mation acquisition is crucial to sensing and control. Age of
Information (AoI) has been widely studied as a metric for
information freshness. Defined as the minimum time elapsed
since the generation of the received data packets, AoI captures
both transmission delays and data generation intervals. By
maintaining a low AoI, systems ensure timely decision-making
and responsiveness, thereby enhancing their overall perfor-
mance and reliability. Current research on AoI spans various
domains, encompassing queuing and analysis, sampling and
remote estimation, wireless scheduling, and networked control.

Within the wireless scheduling research field, there is a
significant emphasis on optimizing scheduling strategies to
minimize AoI, thereby ensuring timely data transmission and
responsiveness. Existing scheduling efforts focus primarily on
designing algorithms under different assumptions for sources,
channels, and destinations. For instance, sources of informa-
tion can involve deterministic or stochastic arrivals, channels
can exhibit reliable or unreliable transmission characteristics,
and destinations can range from a single node to multiple
nodes. Scheduling algorithms for the multi-source single-
destination model were developed and their AoI performance
was analyzed in [1]. In the presence of wireless interference,
a weighted source-destination pair scheduling was studied in
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[2]. The sources were modeled as interrelated types, and an
optimal random scheduling strategy was derived by solving
a convex optimization problem in [3]. A Kalman filter-based
optimal estimation framework was utilized to design schedul-
ing policies in [4]. Scheduling for heterogeneous multi-source
systems was studied, and a generalized round-robin scheduling
policy was proposed in [5]. A lightweight scheduler based on
an AoI function built with the tight scalar upper bound of
the remote estimation error was proposed in [6]. Scheduling
algorithms to minimize the average AoI in a specific multi-
sensor multi-server Internet-of-Things system was discussed
in [7]. The optimization problem to minimize the average
AoI while satisfying the timely throughput constraints was
formulated in [8]. The diversity in model assumptions has led
to the development of numerous scheduling algorithms tailored
to the specific scenarios.

To address the challenge of unknown channels’ service
rates in real-world scenarios where environmental information
is not always fully available, recent research has introduced
learning-based algorithms that model AoI scheduling as a
multi-armed bandit problem. For example, in [9], each channel
was modeled as an “arm”, and each decision involved pulling
an arm to receive a reward. The scheduler estimated the service
rates of different channels based on past rewards and selected
the channel with the highest estimated value at each time
slot. To measure the performance of scheduling algorithms in
unknown environments, a common approach is to compare
with the AoI value corresponding to the optimal strategy.
The difference between the AoI obtained under the current
scheduling strategy and the optimal scheduling was defined
as AoI regret, which quantified the performance loss due to
the learning algorithm. In [9], a lower bound on AoI regret
was provided for single-source systems, and it was shown
that using Upper Confidence Bound (UCB) and Thompson
Sampling can achieve order-optimal performance. Building on
this work, in [10], the single-source setting was extended to
multi-source setting, demonstrating that the upper and lower
bounds of AoI regret are proportional to the number of times
when suboptimal channels were selected over time T . An
order-optimal AoI regret was achieved by a decentralized
round-robin algorithm in [11]. However, all these studies
assumed that channels’ service rates were stationary, learning
a time-invariant unknown quantity for scheduling.

In reality, channels’ service rates are time-varying, and far
less previous research has considered non-stationary chan-



nels. AoI-oriented scheduling under non-stationary channels
in switching environments was studied in [12]. The main
characteristic of a switching environment is that environmental
changes occur abruptly at decision epochs, with the severity
of channel state changes described by constraining the total
number of changes. Upper and lower bounds on AoI regret
under three non-stationary models for a single-source system
were provided in [12]. Another line of work investigated non-
stationary network control under drifting environments [13]
[14]. Unlike switching environments, drifting environments
do not constrain the number of changes but instead limit the
total variation of service rates over time T . This assumption
aligns better with the patterns of real-world environmental
changes, such as the gradual and continuous variations in
channel service rates over time, rather than limiting the total
number of changes. Queue scheduling algorithms were exam-
ined under various total variation assumptions in [15], while a
new Max Weight-UCB algorithm that employed the maximum
weight strategy and sliding window confidence for generalized
wireless network scheduling was introduced in [16]. How-
ever, both [15] and [16] focused on throughput optimization,
without addressing scheduling in drifting environments from
a timeliness perspective.

We study the AoI regret minimization problems in both
single-source and multi-source systems that attempt to com-
municate through a common, limited, and unknown-rate pool
of channels. We consider the scheduling of both sources and
channels while allowing for continuous variations in channels’
service rates. Specifically, our contributions are as follows.

• We develop an AoI regret lower bound for single-
source and multi-source transmission models under non-
stationary channels in the drifting environment.

• For the single-source transmission model, we apply the
REXP3 algorithm [17] as a restarted channel scheduling
algorithm to minimize AoI and prove that the algorithm
achieves an AoI regret upper bound that is within a
logarithmic factor from the lower bound.

• For the multi-source transmission models, we study the
problem with decoupled or coupled sources and channels.
We propose the Max Age REXP3 and Max Weight
Age UCB scheduling algorithms for these scenarios,
respectively, and prove AoI regret upper bounds of the
algorithms.

The rest of the paper is organized as follows. We introduce
the model in Section II. In Section III, we study single-
source systems, develop an AoI regret lower bound, and study
the performance of an algorithm achieving AoI regret upper
bound that is within a logarithmic factor from the lower
bound. In Section IV, we study multi-source systems, develop
algorithms, and prove their AoI regret upper bounds. Section
V presents numerical simulations, and Section VI concludes
the paper.

II. SYSTEM MODEL

In this section, we present models for the transmission
source and channel, and formulate the AoI regret minimization

problems.

A. Source Model

We adopt a discrete time-slotted system. At the beginning
of each time slot, a source generates a new data packet. To
ensure the freshness of the transmitted information, only the
most recently generated data packet is retained in the source
queue, and outdated packets are discarded according to the
Last Come First Served queuing discipline. Depending on the
number of sources, the model can be categorized into single-
source and multi-source systems. In a single-source system,
only channel scheduling needs to be considered, whereas in
a multi-source system, both source and channel scheduling
needs to be addressed.

B. Drifting Channel Model

Information from the sources needs to be transmitted to
the destination through unreliable channels. We use a binary
ON/OFF model to represent the current state of a channel.
When a channel is ON, choosing the channel can successfully
transmit information at the current time. Conversely, when a
channel is OFF, the channel is of poor quality and choosing
this channel would result in a transmission failure. We use
µk(t) to represent the probability that channel k is ON at time
t, through which a data packet can be successfully transmitted.
The probability µk(t) is referred to as the service rate of the
channel k at time t. Different channels have different service
rates, and the rates vary over time even for the same channel.

Channels’ service rates are unknown and can only be
estimated using past scheduling decisions and the history of
transmission successes and failures. Consider non-stationary
channels in a drifting environment, where service rates change
adhering to a given total variation budget within a time period
T .

Assumption 1. (Drifting Dynamic). The total variation
over T is upper-bounded by the variation budget:

T−1∑
t=1

sup
k∈K

|µk(t+ 1)− µk(t)| ≤ VT ,

where VT = 1
KTα with α ∈ (0, 1).

Such a non-stationary channel model has applications in
various contexts. For instance, in wireless communication
systems, it describes fluctuations in channel quality, aiding
the design of scheduling and resource allocation algorithms.
In traffic management, it models dynamic changes in traffic
flow to optimize signal control and route planning. In network
security, this assumption helps model variations in network
traffic to enhance defense capabilities.

C. Coupling Relationship for Multiple Source Transmission

In a multi-source system, both source scheduling and chan-
nel scheduling need to be considered. The sources and chan-
nels can be either coupled or decoupled. If they are coupled,
selecting one source uniquely determines the corresponding
channel. If they are decoupled, the selections of sources and
channels are independent.



Taking the vehicular network scenario as an example, the
coupled model corresponds to the scenario in which multiple
distant vehicles transmit information to a single designated
road side unit. In this case, selecting the vehicle for transmis-
sion (i.e., source) determines the transmission channel. On the
other hand, the decoupled model corresponds to a scenario
where a single vehicle is equipped with multiple types of
sensors and the sensory data are transmitted among adjacent
vehicles. It is possible to independently schedule a specific
type of sensory data and select a channel to transmit data.

D. Performance Metrics

The AoI is a metric that measures the freshness of received
information. It is defined as: h(t) = t−g(t), where t represents
the current time, and g(t) denotes the generation time of the
most recently received data packet up to the current time.

For a single-source system, let hπ(t) denote the destination
AoI under the current policy π. The optimization objective is
to minimize the sum of the AoI over time T :

∑T
t=1 h

π(t).
For a multi-source system, let hπ

m(t) denote the destination
AoI of source m under the current policy π. The optimization
objective is to minimize the sum of the AoI for all sources
over time T :

∑M
m=1

∑T
t=1 h

π
m(t).

Suppose that an oracle knows channels’ service rates at each
decision epoch and can make optimal scheduling decisions to
minimize AoI h∗(t). We define the regret metric to measure
the difference in AoI between strategy π and the optimal
strategy. The regret for a single-source system is

Rπ(T ) = E

[
T∑

t=1

hπ(t)−
T∑

t=1

h∗(t)

]
. (1)

The regret for a multi-source system is

Rπ(T ) = E

[
M∑

m=1

(
T∑

t=1

hπ
m(t)−

T∑
t=1

h∗
m(t)

)]
. (2)

A smaller AoI regret implies that the information reaching
the destination is fresher, which aligns with the optimization
objective of minimizing AoI.

E. Problem Formulation

We consider a centralized scheduling problem for single-
source and multi-source systems operating over non-stationary
channels. For the scheduler, the number of sources and the
coupling relationship between the current sources and channels
are known, while the channels’ service rates at each time slot
remain unknown. The scheduler must learn the channel service
rates based on past scheduling decisions and their correspond-
ing transmission success or failure outcomes, aiming to output
current scheduling decisions that minimize the system’s AoI
regret.

III. CHANNEL SCHEDULING FOR SINGLE-SOURCE
SYSTEMS

Single-source systems only require the decision for channel
scheduling. To investigate the properties of AoI regret in the

drifting environment under Assumption 1, we first establish
a lower bound for AoI regret. Subsequently, we study the
performance of the REXP3 algorithm for channel scheduling,
and analyze its AoI regret upper bound.

A. Lower Bound for AoI Regret in Single-source Systems

Consider a single-source system as depicted in Fig. 1, where
fresh data are generated at each time slot awaiting trans-
mission. There are K available channels in the environment,
following a drifting model of variation. Theorem 1 provides a
lower bound on AoI regret in terms of the number of channels
K, variation budget VT , and total time T under the drifting
environment.

Fig. 1. Single source transmission in the drifting environment.

Theorem 1. With non-stationary channels under Assumption
1, for any number of channels K ≥ 2 and time horizon T ≥ 1,
there exists a distribution over the assignment of channel states
such that the AoI regret of any policy is Ω((KVT )

1/3T 2/3).

Proof. We extend the regret proof from the switching envi-
ronment in [12] to the drifting environment by grouping the
variations in service rates of non-stationary channels across
time slots. We provide a proof outline and highlight the
differences.

First, model each decision moment as following a Bernoulli
distribution, assuming that the mean of a specific channel k∗ is
µk∗ = 1

2 +ϵ, while all other channels have a mean of µk = 1
2 .

This setup is based on the worst-case scenario assumption.
Then, define the indicator function s(t) to represent the

success of current scheduling at time t, and s∗(t) to denote
the success of optimal scheduling. Use s(t)−s∗(t) to quantify
AoI regret. Adopting the approach in [9], a coupling process
is introduced to express E[s(t) − s∗(t)]. This leads to Eq.(7)
in [12]. For an arbitray policy π, the AoI regret over time T
is represented as

Rπ(T ) ≥
2ϵ

K(1 + 2ϵ)

K∑
k∗=1

(T − Ek∗ [Nk∗(T )]),

where k∗ is the best channel, and Nk∗(T ) represents number
of correct choices.

Time in a drifting environment is segmented into intervals
of ∆T time slots, assuming that the value of channel service



rates remain unchanged in a group. The best channel will only
change between the intervals. Under Assumption 1,

T−1∑
t=1

sup
k∈K

|µk(t+ 1)− µk(t)|

≤
g−1∑
j=1

ϵ =

(⌈
T

∆T

⌉
− 1

)
· ϵ ≤ T

∆T
· ϵ ≤ VT ,

where g =
⌈

T
∆T

⌉
represents the number of groups.

From [18] Theorem A.2,
K∑

k∗=1

E [Nk∗(Tj)] ≤ |Tj |+
|Tj |
2

·
√
K|Tj | log

1

1− 4ϵ2
. (3)

By summing over m groups, we obtain

Rπ(T ) ≥
∑g

j=1
ϵ

K( 1
2+ϵ)

·
∑K

k∗=1(|Tj | − E [Nk∗(Tj)])

≥ T · ϵ
K( 1

2+ϵ)
·K − ϵ

K( 1
2+ϵ)

∑g
j=1

∑K
k∗=1 E [Nk∗(Tj)])

≥ T · ϵ
1
2+ϵ

− ϵ
K( 1

2+ϵ)
T − T

2 ·
√

K∆T log 1
1−4ϵ2 ,

where the second inequality follows from
∑g

j=1 |Tj | = T and
the last inequality follows from |Tj | ≤ ∆T .

Using the fact that log 1
1−y ≤ 4 log

(
4
3

)
y for y ∈

[
0, 1

4

]
and

K ≥ 2 from [12],

Rπ(T ) ≥ T · ϵ

2( 12 + ϵ)
− Tϵ2

K( 12 + ϵ)
·
√
K∆T log

4

3
.

Finally, by setting ∆T =

⌈
K

1
3

(
T
vT

) 2
3

⌉
, and ϵ =

min
[
1
4

√
K
∆T

, VT
∆T

T

]
, we obtain

Rπ(T ) ≥
1

4
√
2
(KVT )

1
3 T

2
3 .

B. REXP3 Algorithm and AoI Regret Upper Bound

The scheduling is carried out using the REXP3 algorithm
[17] which was originally developed to solve a reward maxi-
mization problem. The algorithm aims to address the issue of
non-stationary changes by repeatedly restarting the classical
EXP3 algorithm in a multi-armed bandit setting. We apply
the same algorithm and prove its performance for AoI regret
in Theorem 2. For completeness, the algorithm is described as
follows.

Theorem 2. With non-stationary channels under Assump-
tion 1, let π be the REXP3 policy with a batch
size ∆T = ⌈(K logK)1/3 (T/VT )

2/3⌉ and with γ =

min
{
1,
√

K logK
(e−1)∆T

}
. Then, for every T ≥ 1, K ≥ 2, the

AoI regret is O
(
(K logK · VT )

1/3
T 2/3

)
.

The proof of Theorem 2 relies on constructing two equiv-
alent worst-case systems. We extend the method in [9],

Algorithm 1 REXP3
Input: a positive number γ, and a batch size ∆T

Output: channel scheduling decision
Set batch index j = 1.
while j ≤ ⌈T/∆T ⌉ do

Set τ = (j − 1)∆T .
Initialization: for any k ∈ K set ωk

t = 1
for t = τ + 1, ...,min{T, τ +∆T } do

for k ∈ K do
Set pkt = (1− γ)

wk
t∑K

k′=1
wk′

t

+ γ
K .

end
Select the channel k′ from K according to the distri-

bution {pkt }Kk=1.
Receive a reward Xk′

t .
For k′ set X̂k′

t = Xk′

t /pk
′

t .
For any k ̸= k′ set X̂k

t = 0.
For all k ∈ K update:

wk
t+1 = wk

t exp

{
γX̂k

t

K

}
.

end
Set j = j + 1.

end
return

originally applied to stationary channels, to non-stationary
channels, providing a new definition for the alternative system
in the non-stationary setting and a new general formula for
the upper bound of AoI regret. Finally, by incorporating
results from the REXP3 algorithm, we complete the proof.
The restart scheme presents two key challenges in the proof:
the complexity of non-stationary segmented regret summation
and the derivation of performance bounds dependent on spe-
cific window sizes. These challenges highlight the intricacies
involved in adapting the restart strategy to non-stationary
environments.

Proof. Define an alternative scheme A, representing all cases
in the original schedule where the suboptimal channels are
replaced by the current worst channel set, i.e., the set for
channels with service rates µmin(t). Let the original scheme
be O, then

RegretA ≥ RegretO.

For scheme A, when the worst channels are aggregated from
t = 1, the AoI increases [9]. For stationary channels, this con-
clusion holds because, when calculating the AoI for a specific
scheduling, it is represented as the sum of the probabilities
of all scheduling errors, which is the product of 1− µmin or
1 − µ∗. Since the product for earlier errors is lower, moving
the scheduling with µmin to the front increases the cumulative
error probability.

However, directly applying this method in non-stationary
channels would result in errors. This is because, at different
times, the worst service rates µmin(t) are not equal. To



ensure that the AoI increases after clustering, we assume
that N errors occur, with the times of erroneous scheduling
corresponding exactly to the largest N service rates in the set
{µmin(t), t = 1, ....T}. Under these conditions, the inequality

1− µmin(t1) ≥ 1− µmin(t2)

holds for all t1 ≤ t2. Under this assumption, we define the
clustering of erroneous schedules in the first N time slots as
Scheme B. Then,

RegretB ≥ RegretA.

Therefore,
RegretB ≥ RegretO.

Analyzing the AoI corresponding to scheme B, from Eq.(16)-
(18) in [9], we obtain

RegretB =

T∑
t=1

E[h(t)]

≤ T

µ∗min +
1− µ∗min

µ∗minp
+

(
1

p
− 1

µ∗min

)
· E[N(T )],

where µ∗min represents the minimum µmax(t) across all slots,
and p ≤ µmin(t) is a constant greater than zero. We use this
constraint to ensure that no channel is completely shut down,
which also aligns with real-world environmental variations.
Substituting the bound E[N(T )] of the REXP3 for the number
of incorrect selections by the time T [17], we obtain

RegretO = O (K logK · VT )
1
3 T

2
3 .

For channel scheduling in a single-source system, we
demonstrate that it is possible to learn the variations in channel
service rates in drifting environments by employing multi-
armed bandit algorithms and adaptive algorithms for handling
non-stationary problems. Comparing Theorem 1 and Theorem
2, it is evident that the application of the REXP3 algorithm
achieves an AoI regret within a logarithmic factor gap from
the lower bound.

IV. SOURCE AND CHANNEL SCHEDULING FOR
MULTI-SOURCE SYSTEMS

Multi-source systems require scheduling for both sources
and channels. We discuss decoupled and coupled multi-source
systems, and develop the Max Age REXP3 algorithm and
Max Weight Age UCB algorithm, respectively. We analyze
the upper bounds of AoI regret for both algorithms.

A. Decoupled Source and Channel Scheduling

For the decoupled scheduling system shown in Fig. 2,
assume there are M sources and K channels awaiting schedul-
ing. The scheduler outputs source scheduling decisions and
channel scheduling decisions independently.

A centralized scheduler knows the instantanous AoI of every
source. Therefore, the AoI regret during scheduling arises

Fig. 2. Decoupled sources and channels.

entirely from suboptimal channel scheduling, and the lower
bound for AoI regret is given by Theorem 3.

Theorem 3. Under Assumption 1, for any M ≥ 2,K ≥
2, T ≥ 1 and decoupled sources and channels, there exists
a distribution over the assignment of channel states such that
the AoI regret of any policy is Ω((KVT )

1/3T 2/3).

Proof. From Eq. (1) and (2), it can be observed that the AoI
regret for multiple sources is the sum of the AoI regrets for
individual sources. Let rm(t) indicate AoI regret for source m
at time t. Then, the AoI regret for source m can be represented
as:

Rm(T ) = E[
T−1∑
t=1

rm(t)].

The AoI regret for the entire system is expressed as:

R(T ) =

M∑
m=1

Rm(t).

Under centralized scheduling, both an arbitrary policy π and
the optimal policy π∗ select the same source in each round.

R(T ) =

M∑
m=1

E[
T−1∑
t=1

rm(t)].

Moreover, let h∗
m(t) represents AoI of source m under the

optimal policy. From the definition of rm(t):

rm(t) = hm(t)− h∗
m(t).

According to the proof of Theorem 1, the single-source
AoI regret is proportional to the number of incorrect channel
selections N(T ). In the case of multiple sources, the AoI regret
is proportional to the sum of the incorrect channel selection
counts N(T ) for each source. Since the source scheduler is
centralized, it can select the best source in each round. For a
specific source m at the current time t, let Nm(t) represent
the total number of incorrect channel selections up to time t.
Then,

(1) If source m is the best source at time t, the increase in
the number of incorrect selections satisfies the following:

Nm(t)−Nm(t− 1) = 1− I(C(t) = C∗(t)).

(2) If source m is not the best source at time t, then by
not scheduling source m at time t, both the optimal strategy



and the current strategy will increase the AoI of source m by
1, resulting in a total number of incorrect channel selections
increase of 0.

Nm(t)−Nm(t− 1) = 0.

Summing over all sources M , the regret increment between
the current time t and the previous time t − 1 depends on
whether the optimal channel was selected at the current time
t. Summing over time T , the lower bound is determined by
the number of incorrect selections made over time steps T .
Then,

N(T ) =

M∑
m=1

E[
T−1∑
t=1

(1− I(C(t) = C∗(t))P (S(t) = m)]

=

T−1∑
t=1

[1− I(C(t) = C∗(t))].

Meanwhile,
R(T ) = Ω (E [N(T )]) .

Substituting Nk∗(Tj) from Eq.(3) of Theorem 1 completes
the proof.

If only one source can be selected for transmission at each
time slot, and the objective function is the sum of AoI for
all sources, the optimal source for scheduling is the one that,
when its AoI is reset to 1, results in the greatest reduction
of AoI. Based on this observation, we propose the Max Age
REXP3 algorithm in Algorithm 2. The performance is given
by Theorem 4.

Theorem 4. Under Assumption 1, for any M ≥
2,K ≥ 2, T ≥ 1 and decoupled source-channel se-
lection, the AoI regret of Max Age REXP3 policy is
O
(
(K logK · VT )

1/3
T 2/3

)
.

The AoI regret in centralized control arises entirely from
channel scheduling. Therefore, the proof strategy begins by
establishing the optimality of selecting the Max Age source,
which results in no AoI regret. Next, the performance of
REXP3 is analyzed, yielding an outcome equivalent to The-
orem 2. Due to space constraints, detailed proof steps are
omitted.

B. Coupled Source and Channel Scheduling

In the coupled system shown in Fig. 3, there is a one-to-one
pairing between source and channel, and the number of pairs
is K. Since the scheduling decisions made by the scheduler
select specific source-channel pairs, it is necessary to consider
both the current AoI of the sources and the transmission
success rates of the channels.

Assume that an oracle knows the current channels’ ser-
vice rates, the Max-Weight Age scheduling algorithm [1]
minimizes AoI by selecting the source-channel pair with
the largest µihi (t) (hi (t) + 2). For the problem where the
channels’ service rates are unknown, we use a reinforcement
learning algorithm to learn the channel service rate µ̂i(t) at the

Algorithm 2 Max Age REXP3
Input: a positive number γ, and a batch size ∆T

Output: source-channel scheduling decision
Set batch index j = 1.
while j ≤ ⌈T/∆T ⌉ do

Set τ = (j − 1)∆T .
Initialization: for any k ∈ K set ωk

t = 1
for t = τ + 1, ...,min{T, τ +∆T } do

For any m ∈ M, let hm(t) denotes the current AoI of
the source m.

Select a source m′ such that:

m′ = argmaxm∈M hm(t).

for k ∈ K do
Set pkt = (1− γ)

wk
t∑K

k′=1
wk′

t

+ γ
K .

end
Select the channel k′ from K according to the distri-

bution {pkt }Kk=1.
Receive a reward Xk′

t .
For k′ set X̂k′

t = Xk′

t /pk
′

t .
For any k ̸= k′ set X̂k

t = 0.
For all k ∈ K update:

wk
t+1 = wk

t exp

{
γX̂k

t

K

}
.

end
Set j = j + 1.

end
return

Fig. 3. Coupled sources and channels.

current time. Subsequently, we select the scheduling decision
corresponding to the largest µ̂i(t)hi (t) (hi (t) + 2). We name
the algorithm Max Weight Age UCB in Algorithm 3, and
prove its performance in Theorem 5.

Theorem 5. Under Assumption 1, for any M = K ≥ 2, T ≥ 1
and coupled source-channel selection, the AoI regret of Max
Weight Age UCB policy is O

(
(K logK · VT )

1/3
T 2/3

)
.

Proof. (sketch) We aim to find a scheduling policy that solves:

max
i∈I

E
[
W̄i(t) | hi(t)

]
.

As indicated by [16], this problem can be characterized as a



Algorithm 3 Max Weight Age UCB

Input: restart period τ =
⌈
(K logK)1/3 (T/VT )

2/3
⌉

, win-
dow size d = τ

Output: source-channel pair scheduling decision
For any i ∈ I, let hi(t) denotes the current AoI of the pair i.
if t = τj ∈ T = {τ0, τ1, ..., τK} then

Initialize pair i reward ϕi(τj) = 0, pair i selected number
of times Ni(τj) = 0, pair i estimated service rate µ̂i(t) =
0, ∀i ∈ I.

Reset the weights for pair i: wi (τj) =
hi(τj)(hi(τj)+2)

∥h(τj)(h(τj)+2)∥∞
.

end
if t ∈ (τj , τj+1) then

for i ∈ I do
Define the indicator function s(t) to represent the

success of current scheduling at time t. Update pair
i estimated service rate µ̂i(t) as:
ϕi(t) = ϕi(t− 1) + I(x(t− 1) = i)s(t− 1);
Ni(t) = Ni(t− 1) + I(x(t− 1) = i);
µ̂i(t) =

ϕi(t)
Ni(t)

;
wi(t) = wi(τj).

end
end
ρi(t) =

√
3 log(τ)
2Ni(t)

(or ∞ if Ni(t) = 0), ∀i ∈ I.
W̄i(t) = min{wi(t)µ̂i(t) + ρi(t), 1},∀i ∈ I.
Activate the source-channel scheduling decision:

s(t) = argmaxi∈I W̄i(t).

Update current AoI hi for any i ∈ I.
return

stochastic combinatorial multi-armed bandit problem in non-
stationary environment and solved via the combinatorial UCB
with a sliding window algorithm. In view of the requirements,
the reward function satisfies the l1 triggering probability mod-
ulated bounded smoothness assumption and the monotonicity
assumption.

The regret within group τj is related to the restart time,
window size, and degree of variation.

Substituting τ =
⌈
(K logK)1/3 (T/VT )

2/3
⌉

and d = τ

into Lemma 2 in [16], the proof is complete.

We have addressed the problem of source and channel
scheduling in unknown drifting environments for multi-source
systems by proposing algorithms and studying their perfor-
mance. The upper bound performance of both decoupled and
coupled source-channel scheduling are consistent with that
of single-source scheduling, which remains at the order of
(K logK · VT )

1/3T 2/3.

V. SIMULATION

We compare the performance of several algorithms from
the perspectives of channel scheduling and source scheduling,
corresponding to the single-source transmission in Section
3 and the decoupled multi-source transmission scheduling

problem in Section 4. Due to the lack of comparison schemes
for the coupled scheduling system, we compare the algorithm’s
performance under different non-stationary conditions. All
results are presented using AoI regret as the performance
metric.
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Fig. 4. Comparision of channel scheduling algorithms in single-source system.

We analyze a single-source system that selects the channel
with the highest service rate from three options. The initial
rates are 0.5, 0.6, and 0.7, with evaluation over 3,000 time
slots, using VT1 = T 0.20/3 and VT2 = T 0.90/3 in Figure 4.
Baseline performance is compared against EXP algorithms,
with dashed lines (α = 0.2) and solid lines (α = 0.9) in
different colors. The results show that smaller VT reduces
environmental variation and AoI regret. The red line, repre-
senting our REXP3 algorithm, consistently outperforms the
baselines for both α values, demonstrating REXP3’s superior
performance in dynamic environments.

In Figure 5, we consider a system with three sources
and three channels, adding three comparison source selection
schemes to REXP3: random scheduling, round-robin and
Max Age scheduling. Random scheduling selects one source
randomly for scheduling at each time slot, while round-robin
scheduling traverses the sources in a specified order to ensure
fairness in source scheduling. Comparing the performance of
the same algorithm in two drifting environments, all three
algorithms exhibit lower AoI regret in the environment with a
smaller variation budget. Comparing the performance of these
three decoupled scheduling schemes, we observe that random
scheduling exhibits the worst AoI performance, followed by
round-robin scheduling, whereas the Max Age algorithm we
employed achieves the lowest AoI regret.

Coupled scheduling in multi-source transmission lacks com-
parative schemes; thus, we examine the algorithm performance
under various parameters for non-stationary channels. For a
model with three source-channel pairs, we conduct simulations
with µmin= 0.05, 0.10, and 0.20. As shown in Figure 8, smaller
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Fig. 5. Comparision of source scheduling algorithms in decoupled multi-
source system.
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Fig. 6. Comparision of source scheduling algorithms in coupled multi-source
system.

α leads to a lower regret. When α = 0.9, a decrease in µmin

leads to a noticeable increase in AoI regret. This phenomenon
can be explained by the fact that a smaller µmin allows for
greater non-stationary variation in the channels, making it
more challenging to learn accurate current decisions based on
the past scheduling history.

VI. CONCLUSION

We address scheduling problems in single and multi-source
systems under unknown and non-stationary channel condi-
tions, aiming to minimize the system’s AoI. Under the drifting
environment assumption for non-stationarity, we develop AoI
regret lower bounds. We apply REXP3 algorithm for channel
scheduling in a single-source system to minimize AoI and

prove that the AoI regret upper bound is within a logarithmic
factor from the lower bound. Subsequently, we propose the
Max Age REXP3 and Max Weight Age UCB scheduling
algorithms for decoupled and coupled multi-source systems,
respectively, and analyze the upper bounds on AoI regret. Sim-
ulation results validate the effectiveness of these algorithms,
showing that the proposed algorithms outperform baselines.
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